AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ionic liquids produce heteroatom-doped Pt/TiO2 nanocrystals for efficient photocatalytic hydrogen production

Xiuniang Tan1,2Jianling Zhang1,2,3( )Dongxing Tan1,2Jinbiao Shi1,2Xiuyan Cheng1,2Fanyu Zhang1,2Lifei Liu1,2Bingxing Zhang1,2Zhuizhui Su1,2Buxing Han1,2,3
Beijing National Laboratory for Molecular Sciences,CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences,Beijing,100190,China;
School of Chemical Sciences,University of Chinese Academy of Sciences,Beijing,100049,China;
Physical Science Laboratory,Huairou National Comprehensive Science Center,Beijing,101400,China;
Show Author Information

Graphical Abstract

Abstract

It is of great importance to develop facile strategies to synthesize catalysts with desirable compositions and structures for high-performance photocatalytic hydrogen generation. In this work, we put forward an ionic liquid assisted one-pot route for the synthesis of heteroatom-doped Pt/TiO2 composite material. This route is simple, environmentally benign and adjustable owing to the designable properties of ionic liquids. The as-synthesized Pt/TiO2 nanocrystals exhibit high activity and stability for the photocatalytic hydrogen generation under simulated solar irradiation. This method can be easily applied to the synthesis of various kinds of metal/TiO2 composites doped with desirable heteroatoms (e.g., F, Cl, Br, etc).

Electronic Supplementary Material

Download File(s)
12274_2019_2466_MOESM1_ESM.pdf (1.4 MB)

References

1

Pu, S. Y.; Zhu, R. X.; Ma, H.; Deng, D. L.; Pei, X. J.; Qi, F.; Chu, W. Facile in-situ design strategy to disperse TiO2 nanoparticles on graphene for the enhanced photocatalytic degradation of rhodamine 6G. Appl. Catal. B: Environ. 2017, 218, 208-219.

2

Negishi, N.; Miyazaki, Y.; Kato, S.; Yang, Y. N. Effect of HCO3- concentration in groundwater on TiO2 photocatalytic water purification. Appl. Catal. B: Environ. 2019, 242, 449-459.

3

Zhou, W.; Li, W.; Wang, J. Q.; Qu, Y.; Yang, Y.; Xie, Y.; Zhang, K. F.; Wang, L.; Fu, H. G.; Zhao, D. Y. Ordered mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst. J. Am. Chem. Soc. 2014, 136, 9280-9283.

4

AlSalka, Y.; Hakki, A.; Schneider J.; Bahnemann, D. W. Co-catalyst-free photocatalytic hydrogen evolution on TiO2: Synthesis of optimized photocatalyst through statistical material science. Appl. Catal. B: Environ. 2018, 238, 422-433.

5

Komatsuda, S.; Asakura, Y.; Vequizo, J. J. M.; Yamakata, A.; Yin, S. Enhanced photocatalytic NOx decomposition of visible-light responsive F-TiO2/(N, C)-TiO2 by charge transfer between F-TiO2 and (N, C)-TiO2 through their doping levels. Appl. Catal. B: Environ. 2018, 238, 358-364.

6

Tsukamoto, D.; Shiraishi, Y.; Sugano, Y.; Ichikawa, S.; Tanaka, S.; Hirai, T. Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation. J. Am. Chem. Soc. 2012, 134, 6309-6315.

7

Kar, P.; Zeng, S.; Zhang, Y.; Vahidzadeh, E.; Manuel, A.; Kisslinger, R.; Alam, K. M.; Thakur, U. K.; Mahdi, N.; Kumar, P. et al. High rate CO2 photoreduction using flame annealed TiO2 nanotubes. Appl. Catal. B: Environ. 2019, 243, 522-536.

8

Ji, Y. F.; Luo, Y. New mechanism for photocatalytic reduction of CO2 on the anatase TiO2(101) surface: The essential role of oxygen vacancy. J. Am. Chem. Soc. 2016, 138, 15896-15902.

9

Sun, Z. Y.; Talreja, N.; Tao, H. C.; Texter, J.; Muhler, M.; Strunk, J.; Chen, J. F. Catalysis of carbon dioxide photoreduction on nanosheets: Fundamentals and challenges. Angew. Chem. , Int. Ed. 2018, 57, 7610-7627.

10

Zheng, L. H.; Su, H. R.; Zhang, J. Z.; Walekar, L. S.; Molamahmood, H. V.; Zhou, B. X.; Long, M. C.; Hu, Y. H. Highly selective photocatalytic production of H2O2 on sulfur and nitrogen co-doped graphene quantum dots tuned TiO2. Appl. Catal. B: Environ. 2018, 239, 475-484.

11

Tian, C. S.; Sheng, W. L.; Tan, H.; Jiang, H.; Xiong, C. R. Fabrication of lattice-doped TiO2 nanofibers by vapor-phase growth for visible lightdriven N2 conversion to ammonia. ACS Appl. Mater. Interfaces 2018, 10, 37453-37460.

12

Nauth, A. M.; Schechtel, E.; Dören, R.; Tremel, W.; Opatz, T. TiO2 nanoparticles functionalized with non-innocent ligands allow oxidative photocyanation of amines with visible/near-infrared photons. J. Am. Chem. Soc. 2018, 140, 14169-14177.

13

Tasbihi, M.; Fresno, F.; Simon, U.; Villar-García, I. J.; Pérez-Dieste, V.; Escudero, C.; de la Peña O'Shea, V. A. On the selectivity of CO2 photoreduction towards CH4 using Pt/TiO2 catalysts supported on mesoporous silica. Appl. Catal. B: Environ. 2018, 239, 68-76.

14

Gordon, T. R.; Cargnello, M.; Paik, T.; Mangolini, F.; Weber, R. T.; Fornasiero, P.; Murray, C. B. Nonaqueous synthesis of TiO2 nanocrystals using TiF4 to engineer morphology, oxygen vacancy concentration, and photocatalytic activity. J. Am. Chem. Soc. 2012, 134, 6751-6761.

15

Ran, J. R.; Jaroniec, M.; Qiao, S. Z. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: Achievements, challenges, and opportunities. Adv. Mater. 2018, 30, 1704649.

16

Caudillo-Flores, U.; Muñoz-Batista, M. J.; Fernández-García, M.; Kubacka, A. Bimetallic Pt-Pd co-catalyst Nb-doped TiO2 materials for H2 photo-production under UV and Visible light illumination. Appl. Catal. B: Environ. 2018, 238, 533-545.

17

Antolini, E. Photo-assisted methanol oxidation on Pt-TiO2 catalysts for direct methanol fuel cells: A short review. Appl. Catal. B: Environ. 2018, 237, 491-503.

18

Zhang, Y. J.; Liu, J. M.; Zhang, Y.; Bi, Y. P. Relationship between interatomic electron transfer and photocatalytic activity of TiO2. Nano Energy 2018, 51, 504-512.

19

Fang, W. J.; Qin, Z.; Liu, J. Y.; Wei, Z. D.; Jiang, Z.; Shangguan, W. F. Photo-switchable pure water splitting under visible light over nano-Pt@P25 by recycling scattered photons. Appl. Catal. B: Environ. 2018, 236, 140-146.

20

Sinhamahapatra, A.; Lee, H. Y.; Shen, S. H.; Mao, S. S.; Yu, J. S. H-doped TiO2-x prepared with MgH2 for highly efficient solar-driven hydrogen production. Appl. Catal. B: Environ. 2018, 237, 613-621.

21

Yoo, S. J.; Jeon, T. Y.; Lee, K. S.; Park, K. W.; Sung, Y. E. Effects of particle size on surface electronic and electrocatalytic properties of Pt/TiO2 nanocatalysts. Chem. Commun. 2010, 46, 794-796.

22

Blackmore, C. E.; Rees, N. V.; Palmer, R. E. Modular construction of size-selected multiple-core Pt-TiO2 nanoclusters for electro-catalysis. Phys. Chem. Chem. Phys. 2015, 17, 28005-28009.

23

di Valentin, C.; Pacchioni, G. Spectroscopic properties of doped and defective semiconducting oxides from hybrid density functional calculations. ACC. Chem. Res. 2014, 47, 3233-3241.

24

Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J. L.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919-9986.

25

Vaiano, V.; Lara, M. A.; Iervolino, G.; Matarangolo, M.; Navio, J. A.; Hidalgo, M. C. Photocatalytic H2 production from glycerol aqueous solutions over fluorinated Pt-TiO2 with high {001} facet exposure. J. Photochem. Photobiol. A: Chem. 2018, 365, 52-59.

26

Qiao, Y. X.; Ma, W. B.; Theyssen, N.; Chen, C.; Hou, Z. S. Temperature-responsive ionic liquids: Fundamental behaviors and catalytic applications. Chem. Rev. 2017, 117, 6881-6928.

27

Yang, Q. W.; Zhang, Z. Q.; Sun, X. G.; Hu, Y. S.; Xing, H. B.; Dai, S. Ionic liquids and derived materials for lithium and sodium batteries. Chem. Soc. Rev. 2018, 47, 2020-2064.

28

Sun, Z. Y.; Huang, X.; Muhler, M.; Schuhmann, W.; Ventosa, E. A carbon-coated TiO2(B) nanosheet composite for lithium ion batteries. Chem. Commun. 2014, 50, 5506-5509.

29

Zhang, B. X.; Zhang, J. L.; Tan, X. N.; Shao, D.; Shi, J. B.; Zheng, L. R.; Zhang, J.; Yang, G. Y.; Han, B. X. MIL-125-NH2@TiO2 core-shell particles produced by a post-solvothermal route for high-performance photocatalytic H2 production. ACS Appl. Mater. Interfaces 2018, 10, 16418-16423.

30

Sun, Z. Y.; Zhao, Y. F.; Xie, Y.; Tao, R. T.; Zhang, H. Y.; Huang, C. L.; Liu, Z. M. The solvent-free selective hydrogenation of nitrobenzene to aniline: An unexpected catalytic activity of ultrafine Pt nanoparticles deposited on carbon nanotubes. Green Chem. 2010, 12, 1007-1011.

31

Sun, Z. Y.; Masa, J.; Liu, Z. M.; Schuhmann, W.; Muhler, M. Highly concentrated aqueous dispersions of graphene exfoliated by sodium taurodeoxycholate: Dispersion behavior and potential application as a catalyst support for the oxygen-reduction reaction. Chem. -Eur. J. 2012, 18, 6972-6978.

32

Khan, M. M.; Ansari, S. A.; Pradhan, D.; Ansari, M. O.; Han, D. H.; Lee, J.; Cho, M. H. Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J. Mater. Chem. A 2014, 2, 637-644.

33

Kim, G. J.; Kwon, D. W.; Hong, S. C. Effect of Pt particle size and valence state on the performance of Pt/TiO2 catalysts for CO oxidation at room temperature. J. Phys. Chem. C 2016, 120, 17996-18004.

34

Nagai, Y.; Shinjoh, H.; Yokota, K. Oxidation selectivity between n-hexane and sulfur dioxide in diesel simulated exhaust gas over platinum-supported zirconia catalyst. Appl. Catal. B: Environ. 2002, 39, 149-155.

35

Yu, J. G.; Qi, L. F.; Jaroniec, M. Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets. J. Phys. Chem. C 2010, 114, 13118-13125.

36

Nie, L. H.; Yu, J. G.; Li, X. Y.; Cheng, B.; Liu, G.; Jaroniec, M. Enhanced performance of NaOH-modified Pt/TiO2 toward room temperature selective oxidation of formaldehyde. Environ. Sci. Technol. 2013, 47, 2777-2783.

37

Iida, H.; Igarashi, A. Structure characterization of Pt-Re/TiO2 (rutile) and Pt-Re/ZrO2 catalysts for water gas shift reaction at low-temperature. Appl. Catal. A: Gen. 2006, 303, 192-198.

38

Aramendía, M. A.; Colmenares, J. C.; Marinas, A.; Marinas, J. M.; Moreno, J. M.; Navío, J. A.; Urbano, F. J. Effect of the redox treatment of Pt/TiO2 system on its photocatalytic behaviour in the gas phase selective photooxidation of propan-2-ol. Catal. Today 2007, 128, 235-244.

39

Naldoni, A.; Allieta, M.; Santangelo, S.; Marelli, M.; Fabbri, F.; Cappelli, S.; Bianchi, C. L.; Psaro, R.; Dal Santo, V. Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J. Am. Chem. Soc. 2012, 134, 7600-7603.

40

Sinhamahapatra, A.; Jeon, J. P.; Yu, J. S. A new approach to prepare highly active and stable black titania for visible light-assisted hydrogen production. Energy Environ. Sci. 2015, 8, 3539-3544.

41

Yu, H. J.; Li, J. Y.; Zhang, Y. H.; Yang, S. Q.; Han, K. L.; Dong, F.; Ma, T. Y.; Huang, H. W. Three-in-one oxygen vacancies: Whole visible-spectrum absorption, efficient charge separation, and surface site activation for robust CO2 photoreduction. Angew. Chem. , Int. Ed. 2019, 58, 3880-3884.

42

Fan, X. Y.; Zhang, Y.; Zhong, K. D. Charge transfer from internal electrostatic fields is superior to surface defects for 2, 4-dichlorophenol degradation in K3-xNaxB6O10Br photocatalysts. Nanoscale 2018, 10, 20443-20452.

43

Wang, H.; Zhang, W. D.; Li, X. W.; Li, J. Y.; Cen, W. L.; Li, Q. Y.; Dong, F. Highly enhanced visible light photocatalysis and in situ FT-IR studies on Bi metal@defective BiOCl hierarchical microspheres. Appl. Catal. B: Environ. 2018, 225, 218-227.

44

Chiarello, G. L.; Dozzi, M. V.; Scavini, M.; Grunwaldt, J. D.; Selli, E. One step flame-made fluorinated Pt/TiO2 photocatalysts for hydrogen production. Appl. Catal. B: Environ. 2014, 160-161, 144-151.

45

Huo, Y. N.; Jin, Y.; Zhu, J.; Li, H. X. Highly active TiO2-x-yNxFy visible photocatalyst prepared under supercritical conditions in NH4F/EtOH fluid. Appl. Catal. B: Environ. 2009, 89, 543-550.

46

Ihara, T.; Miyoshi, M.; Iriyama, Y.; Matsumoto, O.; Sugihara, S. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping. Appl. Catal. B: Environ. 2003, 42, 403-409.

47

Yang, G. D.; Jiang, Z.; Shi, H. H.; Jones, M. O.; Xiao, T. C.; Edwards, P. P.; Yan, Z. F. Study on the photocatalysis of F-S co-doped TiO2 prepared using solvothermal method. Appl. Catal. B: Environ. 2010, 96, 458-465.

48

Du, X.; He, J. H.; Zhao, Y. G. Facile preparation of F and N codoped pinecone-like titania hollow microparticles with visible light photocatalytic activity. J. Phys. Chem. C 2009, 113, 14151-14158.

49

Pan, J. Q.; Dong, Z. J.; Wang, B. B.; Jiang, Z. Y.; Zhao, C.; Wang, J. J.; Song, C. S.; Zheng, Y. Y.; Li, C. R. The enhancement of photocatalytic hydrogen production via Ti3+ self-doping black TiO2/g-C3N4 hollow core-shell nano-heterojunction. Appl. Catal. B: Environ. 2019, 242, 92-99.

50

Chen, X. Y.; Kuo, D. H.; Lu, D. F. N-doped mesoporous TiO2 nanoparticles synthesized by using biological renewable nanocrystalline cellulose as template for the degradation of pollutants under visible and sun light. Chem. Eng. J. 2016, 295, 192-200.

51

Li, Y. X.; Xie, C. F.; Peng, S. Q.; Lu, G. X.; Li, S. B. Eosin Y-sensitized nitrogen-doped TiO2 for efficient visible light photocatalytic hydrogen evolution. J. Mol. Catal. A: Chem. 2008, 282, 117-123.

52

Xi, B. J.; Verma, L. K.; Li, J.; Bhatia, C. S.; Danner, A. J.; Yang, H.; Zeng, H. C. TiO2 thin films prepared via adsorptive self-assembly for self-cleaning applications. ACS Appl. Mater. Interfaces 2012, 4, 1093-1102.

53

Pastrana-Martínez, L. M.; Morales-Torres, S.; Figueiredo, J. L.; Faria, J. L.; Silva, A. M. T. Graphene oxide based ultrafiltration membranes for photocatalytic degradation of organic pollutants in salty water. Water Res. 2015, 77, 179-190.

54

Wang, Y.; Liu, X. Q.; Zheng, C. C.; Li, Y. C.; Jia, S. R.; Li, Z.; Zhao, Y. L. Tailoring TiO2 nanotube-interlaced graphite carbon nitride nanosheets for improving visible-light-driven photocatalytic performance. Adv. Sci. 2018, 5, 1700844.

55

di Valentin, C.; Finazzi, E.; Pacchioni, G., Selloni, A.; Livraghi, S.; Czoska, A. M.; Paganini, M. C.; Giamello, E. Density functional theory and electron paramagnetic resonance study on the effect of N-F codoping of TiO2. Chem. Mater. 2008, 20, 3706-3714.

56

Qin, L. P.; Wang, G. J.; Tan, Y. W. Plasmonic Pt nanoparticles-TiO2 hierarchical nano-architecture as a visible light photocatalyst for water splitting. Sci. Rep. 2018, 8: 16198.

57

Liu, Y.; Zhang, P.; Tian, B. Z.; Zhang, J. L. Core-shell structural CdS@SnO2 nanorods with excellent visible-light photocatalytic activity for the selective oxidation of benzyl alcohol to benzaldehyde. ACS Appl. Mater. Interfaces 2015, 7, 13849-13858.

58

Kumar, S.; Khanchandani, S.; Thirumal, M.; Ganguli, A. K. Achieving enhanced visible-light-driven photocatalysis using type-Ⅱ NaNbO3/CdS core/shell heterostructures. ACS Appl. Mater. Interfaces 2014, 6, 13221-13233.

59

Zhong, H.; Yang, C.; Fan, L. Z.; Fu, Z. H.; Yang, X.; Wang, X. C.; Wang, R. H. Dyadic promotion of photocatalytic aerobic oxidation via the Mott-Schottky effect enabled by nitrogen-doped carbon from imidazolium-based ionic polymers. Energy Environ. Sci. 2019, 12, 418-426.

60

Yang, Y. R.; Ye, K.; Cao, D. X.; Gao, P.; Qiu, M.; Liu, L.; Yang, P. P. Efficient charge separation from F- selective etching and doping of anatase-TiO2{001} for enhanced photocatalytic hydrogen production. ACS Appl. Mater. Interfaces 2018, 10, 19633-19638.

61

Chu, J. Y.; Sun, Y. C.; Han, X. J.; Zhang, B.; Du, Y. C.; Song, B.; Xu, P. Mixed titanium oxide strategy for enhanced photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 2019, 11, 18475-18482.

62

Chen, Y.; Li, W. Z.; Wang, J. Y.; Gan, Y. L.; Liu, L.; Ju, M. T. Microwave-assisted ionic liquid synthesis of Ti3+ self-doped TiO2 hollow nanocrystals with enhanced visible-light photoactivity. Appl. Catal. B: Environ. 2016, 191, 94-105.

63

Zhou, J.; Chen, W. C.; Sun, C. Y.; Han, L.; Qin, C.; Chen, M. M.; Wang, X. L.; Wang, E. B.; Su, Z. M. Oxidative polyoxometalates modified graphitic carbon nitride for visible-light CO2 reduction. ACS Appl. Mater. Interfaces 2017, 9, 11689-11695.

64

Tan, D. X.; Zhang, J. L.; Shi, J. B.; Li, S. P.; Zhang, B. X.; Tan, X. N.; Zhang, F. Y.; Liu, L. F.; Shao, D.; Han, B. X. Photocatalytic CO2 transformation to CH4 by Ag/Pd bimetals supported on N‑doped TiO2 nanosheet. ACS Appl. Mater. Interfaces 2018, 10, 24516-24522.

65

Dozzi, M. V.; Candeo, A.; Marra, G.; D'Andrea, C.; Valentini, G.; Selli, E. Effects of photodeposited gold vs. platinum nanoparticles on N, F-doped TiO2 photoactivity: A time-resolved photoluminescence investigation. J. Phys. Chem. C 2018, 122, 14326-14335.

66

Martínez, L.; Soler, L.; Angurell, I.; Llorca, J. Effect of TiO2 nanoshape on the photoproduction of hydrogen from water-ethanol mixtures over Au3Cu/TiO2 prepared with preformed Au-Cu alloy nanoparticles. Appl. Catal. B: Environ. 2019, 248, 504-514.

67

Ma, D. D.; Sun, D. K.; Zou, Y. J.; Mao, S. M.; Lv, Y. X.; Wang, Y.; Li, J.; Shi, J. W. The synergy between electronic anchoring effect and internal electric field in CdS quantum dots decorated dandelion-like Fe-CeO2 nanoflowers for improved photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2019, 549, 179-188.

68

Xu, T. T.; Wang, S. L.; Li, L.; Liu, X. Dual templated synthesis of tri-modal porous SrTiO3/TiO2@ carbon composites with enhanced photocatalytic activity. Appl. Catal. A: Gen. 2019, 575, 132-141.

69

Ma, D. D.; Shi, J. W.; Sun, D. K.; Zou, Y. J.; Cheng, L. H.; He, C.; Wang, H. K.; Niu, C. M.; Wang, L. Z. Au decorated hollow ZnO@ZnS heterostructure for enhanced photocatalytic hydrogen evolution: The insight into the roles of hollow channel and Au nanoparticles. Appl. Catal. B: Environ. 2019, 244, 748-757.

70

Xia, Y. Z.; Liang, S. J.; Wu, L.; Wang, X. X. Ultrasmall NiS decorated HNb3O8 nanosheeets as highly efficient photocatalyst for H2 evolution reaction. Catal. Today 2019, 330, 195-202.

71

Liu, Y. Z.; Zhang, H. Y.; Ke, J.; Zhang, J. Q.; Tian, W. J.; Xu, X. Y.; Duan, X. G.; Sun, H. Q.; Tade, M. O.; Wang, S. B. 0D (MoS2)/2D (g-C3N4) heterojunctions in Z-scheme for enhanced photocatalytic and electrochemical hydrogen evolution. Appl. Catal. B: Environ. 2018, 228, 64-74.

72

Cao, S. W.; Li, H.; Tong, T.; Chen, H. C.; Yu, A. C.; Yu, J. G.; Chen, H. M. Single-atom engineering of directional charge transfer channels and active sites for photocatalytic hydrogen evolution. Adv. Funct. Mater. 2018, 28, 1802169.

Nano Research
Pages 1967-1972
Cite this article:
Tan X, Zhang J, Tan D, et al. Ionic liquids produce heteroatom-doped Pt/TiO2 nanocrystals for efficient photocatalytic hydrogen production. Nano Research, 2019, 12(8): 1967-1972. https://doi.org/10.1007/s12274-019-2466-9
Topics:

775

Views

26

Crossref

N/A

Web of Science

24

Scopus

4

CSCD

Altmetrics

Received: 28 March 2019
Revised: 06 June 2019
Accepted: 27 June 2019
Published: 10 July 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return