Graphical Abstract

It is of great importance to develop facile strategies to synthesize catalysts with desirable compositions and structures for high-performance photocatalytic hydrogen generation. In this work, we put forward an ionic liquid assisted one-pot route for the synthesis of heteroatom-doped Pt/TiO2 composite material. This route is simple, environmentally benign and adjustable owing to the designable properties of ionic liquids. The as-synthesized Pt/TiO2 nanocrystals exhibit high activity and stability for the photocatalytic hydrogen generation under simulated solar irradiation. This method can be easily applied to the synthesis of various kinds of metal/TiO2 composites doped with desirable heteroatoms (e.g., F, Cl, Br, etc).
Pu, S. Y.; Zhu, R. X.; Ma, H.; Deng, D. L.; Pei, X. J.; Qi, F.; Chu, W. Facile in-situ design strategy to disperse TiO2 nanoparticles on graphene for the enhanced photocatalytic degradation of rhodamine 6G. Appl. Catal. B: Environ. 2017, 218, 208-219.
Negishi, N.; Miyazaki, Y.; Kato, S.; Yang, Y. N. Effect of HCO3- concentration in groundwater on TiO2 photocatalytic water purification. Appl. Catal. B: Environ. 2019, 242, 449-459.
Zhou, W.; Li, W.; Wang, J. Q.; Qu, Y.; Yang, Y.; Xie, Y.; Zhang, K. F.; Wang, L.; Fu, H. G.; Zhao, D. Y. Ordered mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst. J. Am. Chem. Soc. 2014, 136, 9280-9283.
AlSalka, Y.; Hakki, A.; Schneider J.; Bahnemann, D. W. Co-catalyst-free photocatalytic hydrogen evolution on TiO2: Synthesis of optimized photocatalyst through statistical material science. Appl. Catal. B: Environ. 2018, 238, 422-433.
Komatsuda, S.; Asakura, Y.; Vequizo, J. J. M.; Yamakata, A.; Yin, S. Enhanced photocatalytic NOx decomposition of visible-light responsive F-TiO2/(N, C)-TiO2 by charge transfer between F-TiO2 and (N, C)-TiO2 through their doping levels. Appl. Catal. B: Environ. 2018, 238, 358-364.
Tsukamoto, D.; Shiraishi, Y.; Sugano, Y.; Ichikawa, S.; Tanaka, S.; Hirai, T. Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation. J. Am. Chem. Soc. 2012, 134, 6309-6315.
Kar, P.; Zeng, S.; Zhang, Y.; Vahidzadeh, E.; Manuel, A.; Kisslinger, R.; Alam, K. M.; Thakur, U. K.; Mahdi, N.; Kumar, P. et al. High rate CO2 photoreduction using flame annealed TiO2 nanotubes. Appl. Catal. B: Environ. 2019, 243, 522-536.
Ji, Y. F.; Luo, Y. New mechanism for photocatalytic reduction of CO2 on the anatase TiO2(101) surface: The essential role of oxygen vacancy. J. Am. Chem. Soc. 2016, 138, 15896-15902.
Sun, Z. Y.; Talreja, N.; Tao, H. C.; Texter, J.; Muhler, M.; Strunk, J.; Chen, J. F. Catalysis of carbon dioxide photoreduction on nanosheets: Fundamentals and challenges. Angew. Chem. , Int. Ed. 2018, 57, 7610-7627.
Zheng, L. H.; Su, H. R.; Zhang, J. Z.; Walekar, L. S.; Molamahmood, H. V.; Zhou, B. X.; Long, M. C.; Hu, Y. H. Highly selective photocatalytic production of H2O2 on sulfur and nitrogen co-doped graphene quantum dots tuned TiO2. Appl. Catal. B: Environ. 2018, 239, 475-484.
Tian, C. S.; Sheng, W. L.; Tan, H.; Jiang, H.; Xiong, C. R. Fabrication of lattice-doped TiO2 nanofibers by vapor-phase growth for visible lightdriven N2 conversion to ammonia. ACS Appl. Mater. Interfaces 2018, 10, 37453-37460.
Nauth, A. M.; Schechtel, E.; Dören, R.; Tremel, W.; Opatz, T. TiO2 nanoparticles functionalized with non-innocent ligands allow oxidative photocyanation of amines with visible/near-infrared photons. J. Am. Chem. Soc. 2018, 140, 14169-14177.
Tasbihi, M.; Fresno, F.; Simon, U.; Villar-García, I. J.; Pérez-Dieste, V.; Escudero, C.; de la Peña O'Shea, V. A. On the selectivity of CO2 photoreduction towards CH4 using Pt/TiO2 catalysts supported on mesoporous silica. Appl. Catal. B: Environ. 2018, 239, 68-76.
Gordon, T. R.; Cargnello, M.; Paik, T.; Mangolini, F.; Weber, R. T.; Fornasiero, P.; Murray, C. B. Nonaqueous synthesis of TiO2 nanocrystals using TiF4 to engineer morphology, oxygen vacancy concentration, and photocatalytic activity. J. Am. Chem. Soc. 2012, 134, 6751-6761.
Ran, J. R.; Jaroniec, M.; Qiao, S. Z. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: Achievements, challenges, and opportunities. Adv. Mater. 2018, 30, 1704649.
Caudillo-Flores, U.; Muñoz-Batista, M. J.; Fernández-García, M.; Kubacka, A. Bimetallic Pt-Pd co-catalyst Nb-doped TiO2 materials for H2 photo-production under UV and Visible light illumination. Appl. Catal. B: Environ. 2018, 238, 533-545.
Antolini, E. Photo-assisted methanol oxidation on Pt-TiO2 catalysts for direct methanol fuel cells: A short review. Appl. Catal. B: Environ. 2018, 237, 491-503.
Zhang, Y. J.; Liu, J. M.; Zhang, Y.; Bi, Y. P. Relationship between interatomic electron transfer and photocatalytic activity of TiO2. Nano Energy 2018, 51, 504-512.
Fang, W. J.; Qin, Z.; Liu, J. Y.; Wei, Z. D.; Jiang, Z.; Shangguan, W. F. Photo-switchable pure water splitting under visible light over nano-Pt@P25 by recycling scattered photons. Appl. Catal. B: Environ. 2018, 236, 140-146.
Sinhamahapatra, A.; Lee, H. Y.; Shen, S. H.; Mao, S. S.; Yu, J. S. H-doped TiO2-x prepared with MgH2 for highly efficient solar-driven hydrogen production. Appl. Catal. B: Environ. 2018, 237, 613-621.
Yoo, S. J.; Jeon, T. Y.; Lee, K. S.; Park, K. W.; Sung, Y. E. Effects of particle size on surface electronic and electrocatalytic properties of Pt/TiO2 nanocatalysts. Chem. Commun. 2010, 46, 794-796.
Blackmore, C. E.; Rees, N. V.; Palmer, R. E. Modular construction of size-selected multiple-core Pt-TiO2 nanoclusters for electro-catalysis. Phys. Chem. Chem. Phys. 2015, 17, 28005-28009.
di Valentin, C.; Pacchioni, G. Spectroscopic properties of doped and defective semiconducting oxides from hybrid density functional calculations. ACC. Chem. Res. 2014, 47, 3233-3241.
Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J. L.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919-9986.
Vaiano, V.; Lara, M. A.; Iervolino, G.; Matarangolo, M.; Navio, J. A.; Hidalgo, M. C. Photocatalytic H2 production from glycerol aqueous solutions over fluorinated Pt-TiO2 with high {001} facet exposure. J. Photochem. Photobiol. A: Chem. 2018, 365, 52-59.
Qiao, Y. X.; Ma, W. B.; Theyssen, N.; Chen, C.; Hou, Z. S. Temperature-responsive ionic liquids: Fundamental behaviors and catalytic applications. Chem. Rev. 2017, 117, 6881-6928.
Yang, Q. W.; Zhang, Z. Q.; Sun, X. G.; Hu, Y. S.; Xing, H. B.; Dai, S. Ionic liquids and derived materials for lithium and sodium batteries. Chem. Soc. Rev. 2018, 47, 2020-2064.
Sun, Z. Y.; Huang, X.; Muhler, M.; Schuhmann, W.; Ventosa, E. A carbon-coated TiO2(B) nanosheet composite for lithium ion batteries. Chem. Commun. 2014, 50, 5506-5509.
Zhang, B. X.; Zhang, J. L.; Tan, X. N.; Shao, D.; Shi, J. B.; Zheng, L. R.; Zhang, J.; Yang, G. Y.; Han, B. X. MIL-125-NH2@TiO2 core-shell particles produced by a post-solvothermal route for high-performance photocatalytic H2 production. ACS Appl. Mater. Interfaces 2018, 10, 16418-16423.
Sun, Z. Y.; Zhao, Y. F.; Xie, Y.; Tao, R. T.; Zhang, H. Y.; Huang, C. L.; Liu, Z. M. The solvent-free selective hydrogenation of nitrobenzene to aniline: An unexpected catalytic activity of ultrafine Pt nanoparticles deposited on carbon nanotubes. Green Chem. 2010, 12, 1007-1011.
Sun, Z. Y.; Masa, J.; Liu, Z. M.; Schuhmann, W.; Muhler, M. Highly concentrated aqueous dispersions of graphene exfoliated by sodium taurodeoxycholate: Dispersion behavior and potential application as a catalyst support for the oxygen-reduction reaction. Chem. -Eur. J. 2012, 18, 6972-6978.
Khan, M. M.; Ansari, S. A.; Pradhan, D.; Ansari, M. O.; Han, D. H.; Lee, J.; Cho, M. H. Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J. Mater. Chem. A 2014, 2, 637-644.
Kim, G. J.; Kwon, D. W.; Hong, S. C. Effect of Pt particle size and valence state on the performance of Pt/TiO2 catalysts for CO oxidation at room temperature. J. Phys. Chem. C 2016, 120, 17996-18004.
Nagai, Y.; Shinjoh, H.; Yokota, K. Oxidation selectivity between n-hexane and sulfur dioxide in diesel simulated exhaust gas over platinum-supported zirconia catalyst. Appl. Catal. B: Environ. 2002, 39, 149-155.
Yu, J. G.; Qi, L. F.; Jaroniec, M. Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets. J. Phys. Chem. C 2010, 114, 13118-13125.
Nie, L. H.; Yu, J. G.; Li, X. Y.; Cheng, B.; Liu, G.; Jaroniec, M. Enhanced performance of NaOH-modified Pt/TiO2 toward room temperature selective oxidation of formaldehyde. Environ. Sci. Technol. 2013, 47, 2777-2783.
Iida, H.; Igarashi, A. Structure characterization of Pt-Re/TiO2 (rutile) and Pt-Re/ZrO2 catalysts for water gas shift reaction at low-temperature. Appl. Catal. A: Gen. 2006, 303, 192-198.
Aramendía, M. A.; Colmenares, J. C.; Marinas, A.; Marinas, J. M.; Moreno, J. M.; Navío, J. A.; Urbano, F. J. Effect of the redox treatment of Pt/TiO2 system on its photocatalytic behaviour in the gas phase selective photooxidation of propan-2-ol. Catal. Today 2007, 128, 235-244.
Naldoni, A.; Allieta, M.; Santangelo, S.; Marelli, M.; Fabbri, F.; Cappelli, S.; Bianchi, C. L.; Psaro, R.; Dal Santo, V. Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J. Am. Chem. Soc. 2012, 134, 7600-7603.
Sinhamahapatra, A.; Jeon, J. P.; Yu, J. S. A new approach to prepare highly active and stable black titania for visible light-assisted hydrogen production. Energy Environ. Sci. 2015, 8, 3539-3544.
Yu, H. J.; Li, J. Y.; Zhang, Y. H.; Yang, S. Q.; Han, K. L.; Dong, F.; Ma, T. Y.; Huang, H. W. Three-in-one oxygen vacancies: Whole visible-spectrum absorption, efficient charge separation, and surface site activation for robust CO2 photoreduction. Angew. Chem. , Int. Ed. 2019, 58, 3880-3884.
Fan, X. Y.; Zhang, Y.; Zhong, K. D. Charge transfer from internal electrostatic fields is superior to surface defects for 2, 4-dichlorophenol degradation in K3-xNaxB6O10Br photocatalysts. Nanoscale 2018, 10, 20443-20452.
Wang, H.; Zhang, W. D.; Li, X. W.; Li, J. Y.; Cen, W. L.; Li, Q. Y.; Dong, F. Highly enhanced visible light photocatalysis and in situ FT-IR studies on Bi metal@defective BiOCl hierarchical microspheres. Appl. Catal. B: Environ. 2018, 225, 218-227.
Chiarello, G. L.; Dozzi, M. V.; Scavini, M.; Grunwaldt, J. D.; Selli, E. One step flame-made fluorinated Pt/TiO2 photocatalysts for hydrogen production. Appl. Catal. B: Environ. 2014, 160-161, 144-151.
Huo, Y. N.; Jin, Y.; Zhu, J.; Li, H. X. Highly active TiO2-x-yNxFy visible photocatalyst prepared under supercritical conditions in NH4F/EtOH fluid. Appl. Catal. B: Environ. 2009, 89, 543-550.
Ihara, T.; Miyoshi, M.; Iriyama, Y.; Matsumoto, O.; Sugihara, S. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping. Appl. Catal. B: Environ. 2003, 42, 403-409.
Yang, G. D.; Jiang, Z.; Shi, H. H.; Jones, M. O.; Xiao, T. C.; Edwards, P. P.; Yan, Z. F. Study on the photocatalysis of F-S co-doped TiO2 prepared using solvothermal method. Appl. Catal. B: Environ. 2010, 96, 458-465.
Du, X.; He, J. H.; Zhao, Y. G. Facile preparation of F and N codoped pinecone-like titania hollow microparticles with visible light photocatalytic activity. J. Phys. Chem. C 2009, 113, 14151-14158.
Pan, J. Q.; Dong, Z. J.; Wang, B. B.; Jiang, Z. Y.; Zhao, C.; Wang, J. J.; Song, C. S.; Zheng, Y. Y.; Li, C. R. The enhancement of photocatalytic hydrogen production via Ti3+ self-doping black TiO2/g-C3N4 hollow core-shell nano-heterojunction. Appl. Catal. B: Environ. 2019, 242, 92-99.
Chen, X. Y.; Kuo, D. H.; Lu, D. F. N-doped mesoporous TiO2 nanoparticles synthesized by using biological renewable nanocrystalline cellulose as template for the degradation of pollutants under visible and sun light. Chem. Eng. J. 2016, 295, 192-200.
Li, Y. X.; Xie, C. F.; Peng, S. Q.; Lu, G. X.; Li, S. B. Eosin Y-sensitized nitrogen-doped TiO2 for efficient visible light photocatalytic hydrogen evolution. J. Mol. Catal. A: Chem. 2008, 282, 117-123.
Xi, B. J.; Verma, L. K.; Li, J.; Bhatia, C. S.; Danner, A. J.; Yang, H.; Zeng, H. C. TiO2 thin films prepared via adsorptive self-assembly for self-cleaning applications. ACS Appl. Mater. Interfaces 2012, 4, 1093-1102.
Pastrana-Martínez, L. M.; Morales-Torres, S.; Figueiredo, J. L.; Faria, J. L.; Silva, A. M. T. Graphene oxide based ultrafiltration membranes for photocatalytic degradation of organic pollutants in salty water. Water Res. 2015, 77, 179-190.
Wang, Y.; Liu, X. Q.; Zheng, C. C.; Li, Y. C.; Jia, S. R.; Li, Z.; Zhao, Y. L. Tailoring TiO2 nanotube-interlaced graphite carbon nitride nanosheets for improving visible-light-driven photocatalytic performance. Adv. Sci. 2018, 5, 1700844.
di Valentin, C.; Finazzi, E.; Pacchioni, G., Selloni, A.; Livraghi, S.; Czoska, A. M.; Paganini, M. C.; Giamello, E. Density functional theory and electron paramagnetic resonance study on the effect of N-F codoping of TiO2. Chem. Mater. 2008, 20, 3706-3714.
Qin, L. P.; Wang, G. J.; Tan, Y. W. Plasmonic Pt nanoparticles-TiO2 hierarchical nano-architecture as a visible light photocatalyst for water splitting. Sci. Rep. 2018, 8: 16198.
Liu, Y.; Zhang, P.; Tian, B. Z.; Zhang, J. L. Core-shell structural CdS@SnO2 nanorods with excellent visible-light photocatalytic activity for the selective oxidation of benzyl alcohol to benzaldehyde. ACS Appl. Mater. Interfaces 2015, 7, 13849-13858.
Kumar, S.; Khanchandani, S.; Thirumal, M.; Ganguli, A. K. Achieving enhanced visible-light-driven photocatalysis using type-Ⅱ NaNbO3/CdS core/shell heterostructures. ACS Appl. Mater. Interfaces 2014, 6, 13221-13233.
Zhong, H.; Yang, C.; Fan, L. Z.; Fu, Z. H.; Yang, X.; Wang, X. C.; Wang, R. H. Dyadic promotion of photocatalytic aerobic oxidation via the Mott-Schottky effect enabled by nitrogen-doped carbon from imidazolium-based ionic polymers. Energy Environ. Sci. 2019, 12, 418-426.
Yang, Y. R.; Ye, K.; Cao, D. X.; Gao, P.; Qiu, M.; Liu, L.; Yang, P. P. Efficient charge separation from F- selective etching and doping of anatase-TiO2{001} for enhanced photocatalytic hydrogen production. ACS Appl. Mater. Interfaces 2018, 10, 19633-19638.
Chu, J. Y.; Sun, Y. C.; Han, X. J.; Zhang, B.; Du, Y. C.; Song, B.; Xu, P. Mixed titanium oxide strategy for enhanced photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 2019, 11, 18475-18482.
Chen, Y.; Li, W. Z.; Wang, J. Y.; Gan, Y. L.; Liu, L.; Ju, M. T. Microwave-assisted ionic liquid synthesis of Ti3+ self-doped TiO2 hollow nanocrystals with enhanced visible-light photoactivity. Appl. Catal. B: Environ. 2016, 191, 94-105.
Zhou, J.; Chen, W. C.; Sun, C. Y.; Han, L.; Qin, C.; Chen, M. M.; Wang, X. L.; Wang, E. B.; Su, Z. M. Oxidative polyoxometalates modified graphitic carbon nitride for visible-light CO2 reduction. ACS Appl. Mater. Interfaces 2017, 9, 11689-11695.
Tan, D. X.; Zhang, J. L.; Shi, J. B.; Li, S. P.; Zhang, B. X.; Tan, X. N.; Zhang, F. Y.; Liu, L. F.; Shao, D.; Han, B. X. Photocatalytic CO2 transformation to CH4 by Ag/Pd bimetals supported on N‑doped TiO2 nanosheet. ACS Appl. Mater. Interfaces 2018, 10, 24516-24522.
Dozzi, M. V.; Candeo, A.; Marra, G.; D'Andrea, C.; Valentini, G.; Selli, E. Effects of photodeposited gold vs. platinum nanoparticles on N, F-doped TiO2 photoactivity: A time-resolved photoluminescence investigation. J. Phys. Chem. C 2018, 122, 14326-14335.
Martínez, L.; Soler, L.; Angurell, I.; Llorca, J. Effect of TiO2 nanoshape on the photoproduction of hydrogen from water-ethanol mixtures over Au3Cu/TiO2 prepared with preformed Au-Cu alloy nanoparticles. Appl. Catal. B: Environ. 2019, 248, 504-514.
Ma, D. D.; Sun, D. K.; Zou, Y. J.; Mao, S. M.; Lv, Y. X.; Wang, Y.; Li, J.; Shi, J. W. The synergy between electronic anchoring effect and internal electric field in CdS quantum dots decorated dandelion-like Fe-CeO2 nanoflowers for improved photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2019, 549, 179-188.
Xu, T. T.; Wang, S. L.; Li, L.; Liu, X. Dual templated synthesis of tri-modal porous SrTiO3/TiO2@ carbon composites with enhanced photocatalytic activity. Appl. Catal. A: Gen. 2019, 575, 132-141.
Ma, D. D.; Shi, J. W.; Sun, D. K.; Zou, Y. J.; Cheng, L. H.; He, C.; Wang, H. K.; Niu, C. M.; Wang, L. Z. Au decorated hollow ZnO@ZnS heterostructure for enhanced photocatalytic hydrogen evolution: The insight into the roles of hollow channel and Au nanoparticles. Appl. Catal. B: Environ. 2019, 244, 748-757.
Xia, Y. Z.; Liang, S. J.; Wu, L.; Wang, X. X. Ultrasmall NiS decorated HNb3O8 nanosheeets as highly efficient photocatalyst for H2 evolution reaction. Catal. Today 2019, 330, 195-202.
Liu, Y. Z.; Zhang, H. Y.; Ke, J.; Zhang, J. Q.; Tian, W. J.; Xu, X. Y.; Duan, X. G.; Sun, H. Q.; Tade, M. O.; Wang, S. B. 0D (MoS2)/2D (g-C3N4) heterojunctions in Z-scheme for enhanced photocatalytic and electrochemical hydrogen evolution. Appl. Catal. B: Environ. 2018, 228, 64-74.
Cao, S. W.; Li, H.; Tong, T.; Chen, H. C.; Yu, A. C.; Yu, J. G.; Chen, H. M. Single-atom engineering of directional charge transfer channels and active sites for photocatalytic hydrogen evolution. Adv. Funct. Mater. 2018, 28, 1802169.