Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The significance of graphene and its two-dimensional (2D) analogous inorganic layered materials especially as hexagonal boron nitride (h-BN) and molybdenum disulphide (MoS2) for "clean energy" applications became apparent over the last few years due to their extraordinary properties. In this review article we study the current progress and selected challenges in the syntheses of graphene, h-BN and MoS2 including energy storage applications as supercapacitors and batteries. Various substrates/catalysts (metals/insulator/semiconducting) have been used to obtain graphene, h-BN and MoS2 using different kinds of precursors. The most widespread methods for synthesis of graphene, h-BN and MoS2 layers are chemical vapor deposition (CVD), plasma-enhanced CVD, hydro/solvothermal methods, liquid phase exfoliation, physical methods etc. Current research has shown that graphene, h-BN and MoS2 layered materials modified with metal oxide can have an insightful influence on the performance of energy storage devices as supercapacitors and batteries. This review article also contains the discussion on the opportunities and perspectives of these materials (graphene, h-BN and MoS2) in the energy storage fields. We expect that this written review article including recent research on energy storage will help in generating new insights for further development and practical applications of graphene, h-BN and MoS2 layers based materials.
Kumar, R.; Joanni, E.; Singh, R. K.; Singh, D. P.; Moshkalev, S. A. Recent advances in the synthesis and modification of carbon-based 2D materials for application in energy conversion and storage. Prog. Energy Combust. Sci. 2018, 67, 115-157.
Kumar, R.; Singh, R. K.; Singh, D. P.; Joanni, E.; Yadav, R. M.; Moshkalev, S. A. Laser-assisted synthesis, reduction and micro-patterning of graphene: Recent progress and applications. Coord. Chem. Rev. 2017, 342, 34-79.
Mas-Ballesté, R.; Gómez-Navarro, C.; Gómez-Herrero, J.; Zamora, F. 2D materials: To graphene and beyond. Nanoscale 2011, 3, 20-30.
Singh, R. K.; Kumar, R.; Singh, D. P. Graphene oxide: Strategies for synthesis, reduction and frontier applications. RSC Adv. 2016, 6, 64993-65011.
Dong, R. H.; Zhang, T.; Feng, X. L. Interface-assisted synthesis of 2D materials: Trend and challenges. Chem. Rev. 2018, 118, 6189-6235.
Singh, D. P.; Herrera, C. E.; Singh, B.; Singh, S.; Singh, R. K.; Kumar, R. Graphene oxide: An efficient material and recent approach for biotechnological and biomedical applications. Mater. Sci. Eng. C 2018, 86, 173-197.
Kumar, R.; Singh, R. K.; Singh, D. P. Natural and waste hydrocarbon precursors for the synthesis of carbon based nanomaterials: Graphene and CNTs. Renew. Sustain. Energy Rev. 2016, 58, 976-1006.
Zeng, M. Q.; Xiao, Y.; Liu, J. X.; Yang, K. N.; Fu, L. Exploring two-dimensional materials toward the next-generation circuits: From monomer design to assembly control. Chem. Rev. 2018, 118, 6236-6296.
Liu, H. H.; Li, M. P.; Kaner, R. B.; Chen, S. Y.; Pei, Q. B. Monolithically integrated self-charging power pack consisting of a silicon nanowire array/conductive polymer hybrid solar cell and a laser-scribed graphene supercapacitor. ACS Appl. Mater. Interfaces 2018, 10, 15609-15615.
Arramel; Wang, Q.; Zheng, Y.; Zhang, W.; Wee, A. T. S. Towards molecular doping effect on the electronic properties of two-dimensional layered materials. J. Phys. Conf. Ser. 2016, 739, 012014.
Guan, Z. Y.; Lian, C. S.; Hu, S. L.; Ni, S.; Li, J.; Duan, W. H. Tunable structural, electronic, and optical properties of layered two-dimensional C2N and MoS2 van der Waals heterostructure as photovoltaic material. J. Phys. Chem. C 2017, 121, 3654-3660.
Sun, Z. H.; Chang, H. X. Graphene and graphene-like two-dimensional materials in photodetection: Mechanisms and methodology. ACS Nano 2014, 8, 4133-4156.
Dissanayake, D. M. A. S.; Cifuentes, M. P.; Humphrey, M. G. Optical limiting properties of (reduced) graphene oxide covalently functionalized by coordination complexes. Coord. Chem. Rev. 2018, 375, 489-513.
Hu, G. H.; Kang, J.; Ng, L. W. T.; Zhu, X. X.; Howe, R. C. T.; Jones, C. G.; Hersam, M. C.; Hasan, T. Functional inks and printing of two-dimensional materials. Chem. Soc. Rev. 2018, 47, 3265-3300.
Kumar, R.; Savu, R.; Joanni, E.; Vaz, A. R.; Canesqui, M. A.; Singh, R. K.; Timm, R. A.; Kubota, L. T.; Moshkalev, S. A. Fabrication of interdigitated micro-supercapacitor devices by direct laser writing onto ultra-thin, flexible and free-standing graphite oxide films. RSC Adv. 2016, 6, 84769-84776.
Farooqui, U. R.; Ahmad, A. L.; Hamid, N. A. Graphene oxide: A promising membrane material for fuel cells. Renew. Sustain. Energy Rev. 2018, 82, 714-733.
Kumar, R.; Joanni, E.; Singh, R. K.; da Silva, E. T. S. G.; Savu, R.; Kubota, L. T.; Moshkalev, S. A. Direct laser writing of micro-supercapacitors on thick graphite oxide films and their electrochemical properties in different liquid inorganic electrolytes. J. Colloid Interface Sci. 2017, 507, 271-278.
Irani, R.; Naseri, N.; Beke, S. A review of 2D-based counter electrodes applied in solar-assisted devices. Coord. Chem. Rev. 2016, 324, 54-81.
Yadav, S. K.; Kumar, R.; Sundramoorthy, A. K.; Singh, R. K.; Koo, C. M. Simultaneous reduction and covalent grafting of polythiophene on graphene oxide sheets for excellent capacitance retention. RSC Adv. 2016, 6, 52945-52949.
Shuvo, M. A. I.; Khan, M. A. R.; Karim, H.; Morton, P.; Wilson, T.; Lin, Y. R. Investigation of modified graphene for energy storage applications. ACS Appl. Mater. Interfaces 2013, 5, 7881-7885.
Lee, S. K.; Rana, K.; Ahn, J. H. Graphene films for flexible organic and energy storage devices. J. Phys. Chem. Lett. 2013, 4, 831-841.
Tao, L. Q.; Zhang, K. N.; Tian, H.; Liu, Y.; Wang, D. Y.; Chen, Y. Q.; Yang, Y.; Ren, T. L. Graphene-paper pressure sensor for detecting human motions. ACS Nano 2017, 11, 8790-8795.
Zhu, J.; Ha, E. N.; Zhao, G. L.; Zhou, Y.; Huang, D. S.; Yue, G. Z.; Hu, L. S.; Sun, N.; Wang, Y.; Lee, L. Y. S. et al. Recent advance in MXenes: A promising 2D material for catalysis, sensor and chemical adsorption. Coord. Chem. Rev. 2017, 352, 306-327.
Kang, M.; Kim, J.; Jang, B.; Chae, Y.; Kim, J. H.; Ahn, J. H. Graphene-based three-dimensional capacitive touch sensor for wearable electronics. ACS Nano 2017, 11, 7950-7957.
Rosli, N. N.; Ibrahim, M. A.; Ahmad Ludin, N.; Mat Teridi, M. A.; Sopian, K. A review of graphene based transparent conducting films for use in solar photovoltaic applications. Renew. Sustain. Energy Rev. 2019, 99, 83-99.
Ghawanmeh, A. A.; Ali, G. A. M.; Algarni, H.; Sarkar, S. M.; Chong, K. F. Graphene oxide-based hydrogels as a nanocarrier for anticancer drug delivery. Nano Res. 2019, 12, 973-990.
Bulusheva, L. G.; Koroteev, V. O.; Stolyarova, S. G.; Chuvilin, A. L.; Plyusnin, P. E.; Shubin, Y. V.; Vilkov, O. Y.; Chen, X. H.; Song, H. H.; Okotrub, A. V. Effect of in-plane size of MoS2 nanoparticles grown over multilayer graphene on the electrochemical performance of anodes in Li-ion batteries. Electrochim. Acta 2018, 283, 45-53.
Kumar, R.; Oh, J. H.; Kim, H. J.; Jung, J. H.; Jung, C. H.; Hong, W. G.; Kim, H. J.; Park, J. Y.; Oh, I. K. Nanohole-structured and palladium-embedded 3D porous graphene for ultrahigh hydrogen storage and CO oxidation multifunctionalities. ACS Nano 2015, 9, 7343-7351.
Zhang, H. Introduction: 2D materials chemistry. Chem. Rev. 2018, 118, 6089-6090.
Chen, C. C.; Li, Z.; Shi, L.; Cronin, S. B. Thermoelectric transport across graphene/hexagonal boron nitride/graphene heterostructures. Nano Res. 2015, 8, 666-672.
Wang, P.; Jiang, T. F.; Zhu, C. Z.; Zhai, Y. M.; Wang, D. J.; Dong, S. J. One-step, solvothermal synthesis of graphene-CdS and graphene-ZnS quantum dot nanocomposites and their interesting photovoltaic properties. Nano Res. 2010, 3, 794-799.
He, Z. L.; Que, W. X. Molybdenum disulfide nanomaterials: Structures, properties, synthesis and recent progress on hydrogen evolution reaction. Appl. Mater. Today 2016, 3, 23-56.
Xia, F. N.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photonics 2014, 8, 899-907.
Xia, W. S.; Dai, L. P.; Yu, P.; Tong, X.; Song, W. P.; Zhang, G. J.; Wang, Z. M. Recent progress in van der Waals heterojunctions. Nanoscale 2017, 9, 4324-4365.
Sun, Z. P.; Martinez, A.; Wang, F. Optical modulators with 2D layered materials. Nat. Photonics 2016, 10, 227-238.
Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photonics 2010, 4, 611-622.
Ferrari, A. C.; Bonaccorso, F.; Fal'ko, V.; Novoselov, K. S.; Roche, S.; Bøggild, P.; Borini, S.; Koppens, F. H. L.; Palermo, V.; Pugno, N. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 2015, 7, 4598-4810.
Samaddar, P.; Son, Y. S.; Tsang, D. C. W.; Kim, K. H.; Kumar, S. Progress in graphene-based materials as superior media for sensing, sorption, and separation of gaseous pollutants. Coord. Chem. Rev. 2018, 368, 93-114.
Muschi, M.; Serre, C. Progress and challenges of graphene oxide/metal-organic composites. Coord. Chem. Rev. 2019, 387, 262-272.
Dai, B. Y.; Fu, L.; Liao, L.; Liu, N.; Yan, K.; Chen, Y. S.; Liu, Z. F. High-quality single-layer graphene via reparative reduction of graphene oxide. Nano Res. 2011, 4, 434-439.
Kumar, R.; Yadav, R. M.; Awasthi, K.; Shripathi, T.; Sinha, A. S. K.; Tiwari, R. S.; Srivastava, O. N. Synthesis of carbon and carbon-nitrogen nanotubes using green precursor: Jatropha-derived biodiesel. J. Exp. Nanosci. 2013, 8, 606-620.
Kumar, R.; Dubey, P. K.; Singh, R. K.; Vaz, A. R.; Moshkalev, S. A. Catalyst-free synthesis of a three-dimensional nanoworm-like gallium oxide-graphene nanosheet hybrid structure with enhanced optical properties. RSC Adv. 2016, 6, 17669-17677.
Stoller, M. D.; Park, S.; Zhu, Y. W.; An, J.; Ruoff, R. S. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498-3502.
Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902-907.
Shahil, K. M. F.; Balandin, A. A. Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials. Solid State Commun. 2012, 152, 1331-1340.
Mahanta, N. K.; Abramson, A. R. Thermal conductivity of graphene and graphene oxide nanoplatelets. In Proceedings of the 13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, San Diego, CA, USA, 2012, pp 1-6.
Fugallo, G.; Cepellotti, A.; Paulatto, L.; Lazzeri, M.; Marzari, N.; Mauri, F. Thermal conductivity of graphene and graphite: Collective excitations and mean free paths. Nano Lett. 2014, 14, 6109-6114.
Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385-388.
Androulidakis, C.; Zhang, K. H.; Robertson, M.; Tawfick, S. Tailoring the mechanical properties of 2D materials and heterostructures. 2D Mater. 2018, 5, 032005.
Chen, J. H.; Jang, C.; Xiao, S. D.; Ishigami, M.; Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 2008, 3, 206-209.
Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351-355.
Nag, A.; Raidongia, K.; Hembram, K. P. S. S.; Datta, R.; Waghmare, U. V.; Rao, C. N. R. Graphene analogues of BN: Novel synthesis and properties. ACS Nano 2010, 4, 1539-1544.
Topsakal, M.; Aktürk, E.; Ciraci, S. First-principles study of two- and one-dimensional honeycomb structures of boron nitride. Phys. Rev. B 2009, 79, 115442.
Peng, Q.; Ji, W.; De, S. Mechanical properties of the hexagonal boron nitride monolayer: Ab initio study. Comput. Mater. Sci. 2012, 56, 11-17.
Hernández, E.; Goze, C.; Bernier, P.; Rubio, A. Elastic properties of C and BxCyNz composite nanotubes. Phys. Rev. Lett. 1998, 80, 4502-4505.
Suryavanshi, A. P.; Yu, M. F.; Wen, J. G.; Tang, C. C.; Bando, Y. Elastic modulus and resonance behavior of boron nitride nanotubes. Appl. Phys. Lett. 2004, 84, 2527-2529.
Kim, P.; Shi, L.; Majumdar, A.; McEuen, P. L. Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 2001, 87, 215502.
Watanabe, K.; Taniguchi, T.; Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 2004, 3, 404-409.
Lee, G. W.; Park, M.; Kim, J.; Lee, J. I.; Yoon, H. G. Enhanced thermal conductivity of polymer composites filled with hybrid filler. Compos. Part A Appl. Sci. Manuf. 2006, 37, 727-734.
Zhi, C. Y.; Bando, Y.; Tang, C. C.; Kuwahara, H.; Golberg, D. Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv. Mater. 2009, 21, 2889-2893.
Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.
Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271-1275.
Li, T. S.; Galli, G. Electronic properties of MoS2 nanoparticles. J. Phys. Chem. C 2007, 111, 16192-16196.
Lebègue, S.; Eriksson, O. Electronic structure of two-dimensional crystals from ab initio theory. Phys. Rev. B 2009, 79, 115409.
Kan, M.; Wang, J. Y.; Li, X. W.; Zhang, S. H.; Li, Y. W.; Kawazoe, Y.; Sun, Q.; Jena, P. Structures and phase transition of a MoS2 monolayer. J. Phys. Chem. C 2014, 118, 1515-1522.
Bao, W. Z.; Cai, X. H.; Kim, D.; Sridhara, K.; Fuhrer, M. S. High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects. Appl. Phys. Lett. 2013, 102, 042104.
Yoon, Y.; Ganapathi, K.; Salahuddin, S. How good can monolayer MoS2 transistors be? Nano Lett. 2011, 11, 3768-3773.
Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013, 13, 100-105.
Zhang, Q.; Jie, J. S.; Diao, S. L.; Shao, Z. B.; Zhang, Q.; Wang, L.; Deng, W.; Hu, W. D.; Xia, H.; Yuan, X. D. et al. Solution-processed graphene quantum dot deep-UV photodetectors. ACS Nano 2015, 9, 1561-1570.
Cheng, H. H.; Zhao, Y.; Fan, Y. Q.; Xie, X. J.; Qu, L. T.; Shi, G. Q. Graphene-quantum-dot assembled nanotubes: A new platform for efficient Raman enhancement. ACS Nano 2012, 6, 2237-2244.
Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.
Pu, J.; Yomogida, Y.; Liu, K. K.; Li, L. J.; Iwasa, Y.; Takenobu, T. Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett. 2012, 12, 4013-4017.
Stephenson, T.; Li, Z.; Olsen, B.; Mitlin, D. Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ. Sci. 2014, 7, 209-231.
Wu, W. Z.; Wang, L.; Li, Y. L.; Zhang, F.; Lin, L.; Niu, S. M.; Chenet, D.; Zhang, X.; Hao, Y. F.; Heinz, T. F. et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 2014, 514, 470-474.
Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.
Mak, K. F.; He, K. L.; Shan, J.; Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 2012, 7, 494-498.
Zeng, H. L.; Dai, J. F.; Yao, W.; Xiao, D.; Cui, X. D. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 2012, 7, 490-493.
Cao, T.; Wang, G.; Han, W. P.; Ye, H. Q.; Zhu, C. R.; Shi, J. R.; Niu, Q.; Tan, P. H.; Wang, E. G.; Liu, B. L. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 2012, 3, 887.
Mak, K. F.; He, K. L.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207-211.
Chen, Z. P.; Ren, W. C.; Gao, L. B.; Liu, B. L.; Pei, S. F.; Cheng, H. M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424-428.
Cai, Z. Y.; Liu, B. L.; Zou, X. L.; Cheng, H. M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 2018, 118, 6091-6133.
Gao, L. B.; Ren, W. C.; Zhao, J. P.; Ma, L. P.; Chen, Z. P.; Cheng, H. M. Efficient growth of high-quality graphene films on Cu foils by ambient pressure chemical vapor deposition. Appl. Phys. Lett. 2010, 97, 183109.
Gan, X. R.; Zhao, H. M.; Quan, X. Two-dimensional MoS2: A promising building block for biosensors. Biosens. Bioelectron. 2017, 89, 56-71.
Ma, L. P.; Ren, W. C.; Dong, Z. L.; Liu, L. Q.; Cheng, H. M. Progress of graphene growth on copper by chemical vapor deposition: Growth behavior and controlled synthesis. Chin. Sci. Bull. 2012, 57, 2995-2999.
Serp, P.; Kalck, P.; Feurer, R. Chemical vapor deposition methods for the controlled preparation of supported catalytic materials. Chem. Rev. 2002, 102, 3085-3128.
Shi, Y. M.; Li, H. N.; Li, L. J. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chem. Soc. Rev. 2015, 44, 2744-2756.
Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L. S.; Jin, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 2013, 135, 10274-10277.
Wang, X. S.; Feng, H. B.; Wu, Y. M.; Jiao, L. Y. Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J. Am. Chem. Soc. 2013, 135, 5304-5307.
Zhan, Y. J.; Liu, Z.; Najmaei, S.; Ajayan, P. M.; Lou, J. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 2012, 8, 966-971.
Li, X. L.; Ge, J. P.; Li, Y. D. Atmospheric pressure chemical vapor deposition: An alternative route to large-scale MoS2 and WS2 inorganic fullerene-like nanostructures and nanoflowers. Chem. â€"Eur. J. 2004, 10, 6163-6171.
Etzkorn, J.; Therese, H. A.; Rocker, F.; Zink, N.; Kolb, U.; Tremel, W. Metal-organic chemical vapor depostion synthesis of hollow inorganic-fullerene-type MoS2 and MoSe2 nanoparticles. Adv. Mater. 2005, 17, 2372-2375.
Lee, W. Y.; Besmann, T. M.; Stott, M. W. Preparation of MoS2 thin films by chemical vapor deposition. J. Mater. Res. 1994, 9, 1474-1483.
Sun, Y. Y.; Zhang, W. H.; Chi, H. J.; Liu, Y. Q.; Hou, C. L.; Fang, D. N. Recent development of graphene materials applied in polymer solar cell. Renew. Sustain. Energy Rev. 2015, 43, 973-980.
Yang, P.; Yang, A. G.; Chen, L. X.; Chen, J.; Zhang, Y. W.; Wang, H. M.; Hu, L. G.; Zhang, R. J.; Liu, R.; Qu, X. P. et al. Influence of seeding promoters on the properties of CVD grown monolayer molybdenum disulfide. Nano Res. 2019, 12, 823-827.
Edwards, R. S.; Coleman, K. S. Graphene film growth on polycrystalline metals. Acc. Chem. Res. 2013, 46, 23-30.
Huang, M.; Biswal, M.; Park, H. J.; Jin, S.; Qu, D. S.; Hong, S.; Zhu, Z. L.; Qiu, L.; Luo, D.; Liu, X. C. et al. Highly oriented monolayer graphene grown on a Cu/Ni(111) alloy foil. ACS Nano 2018, 12, 6117-6127.
Eom, D.; Prezzi, D.; Rim, K. T.; Zhou, H.; Lefenfeld, M.; Xiao, S. X.; Nuckolls, C.; Hybertsen, M. S.; Heinz, T. F.; Flynn, G. W. Structure and electronic properties of graphene nanoislands on Co(0001). Nano Lett. 2009, 9, 2844-2848.
Kondo, D.; Yagi, K.; Sato, M.; Nihei, M.; Awano, Y.; Sato, S.; Yokoyama, N. Selective synthesis of carbon nanotubes and multi-layer graphene by controlling catalyst thickness. Chem. Phys. Lett. 2011, 514, 294-300.
Gomez De Arco, L.; Zhang, Y.; Schlenker, C. W.; Ryu, K.; Thompson, M. E.; Zhou, C. W. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 2010, 4, 2865-2873.
Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30-35.
Reina, A.; Thiele, S.; Jia, X. T.; Bhaviripudi, S.; Dresselhaus, M. S.; Schaefer, J. A.; Kong, J. Growth of large-area single- and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res. 2009, 2, 509-516.
Zhang, Y.; Gomez, L.; Ishikawa, F. N.; Madaria, A.; Ryu, K.; Wang, C.; Badmaev, A.; Zhou, C. W. Comparison of graphene growth on single-crystalline and polycrystalline Ni by chemical vapor deposition. J. Phys. Chem. Lett. 2010, 1, 3101-3107.
Thiele, S.; Reina, A.; Healey, P.; Kedzierski, J.; Wyatt, P.; Hsu, P. L.; Keast, C.; Schaefer, J.; Kong, J. Engineering polycrystalline Ni films to improve thickness uniformity of the chemical-vapor-deposition-grown graphene films. Nanotechnology 2010, 21, 015601.
Chae, S. J.; Güneş, F.; Kim, K. K.; Kim, E. S.; Han, G. H.; Kim, S. M.; Shin, H. J.; Yoon, S. M.; Choi, J. Y.; Park, M. H. et al. Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: Wrinkle formation. Adv. Mater. 2009, 21, 2328-2333.
Qu, L. T.; Liu, Y.; Baek, J. B.; Dai, L. M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321-1326.
Takahashi, K.; Yamada, K.; Kato, H.; Hibino, H.; Homma, Y. In situ scanning electron microscopy of graphene growth on polycrystalline Ni substrate. Surf. Sci. 2012, 606, 728-732.
Guermoune, A.; Chari, T.; Popescu, F.; Sabri, S. S.; Guillemette, J.; Skulason, H. S.; Szkopek, T.; Siaj, M. Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors. Carbon 2011, 49, 4204-4210.
Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312-1314.
Zhang, F.; Cao, H. Q.; Yue, D. M.; Zhang, J. X.; Qu, M. Z. Enhanced anode performances of polyaniline-TiO2-reduced graphene oxide nanocomposites for lithium ion batteries. Inorg. Chem. 2012, 51, 9544-9551.
Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574-578.
Li, X. S.; Cai, W. W.; Colombo, L.; Ruoff, R. S. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 2009, 9, 4268-4272.
Mattevi, C.; Kim, H.; Chhowalla, M. A review of chemical vapour deposition of graphene on copper. J. Mater. Chem. 2011, 21, 3324-3334.
Li, X. S.; Magnuson, C. W.; Venugopal, A.; An, J.; Suk, J. W.; Han, B. Y.; Borysiak, M.; Cai, W. W.; Velamakanni, A.; Zhu, Y. W. et al. Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett. 2010, 10, 4328-4334.
Luo, Z. T.; Lu, Y.; Singer, D. W.; Berck, M. E.; Somers, L. A.; Goldsmith, B. R.; Johnson, A. T. C. Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure. Chem. Mater. 2011, 23, 1441-1447.
Lee, Y.; Bae, S.; Jang, H.; Jang, S.; Zhu, S. E.; Sim, S. H.; Song, Y. I.; Hong, B. H.; Ahn, J. H. Wafer-scale synthesis and transfer of graphene films. Nano Lett. 2010, 10, 490-493.
Vo-Van, C.; Kimouche, A.; Reserbat-Plantey, A.; Fruchart, O.; Bayle-Guillemaud, P.; Bendiab, N.; Coraux, J. Epitaxial graphene prepared by chemical vapor deposition on single crystal thin iridium films on sapphire. Appl. Phys. Lett. 2011, 98, 181903.
Ramón, M. E.; Gupta, A.; Corbet, C.; Ferrer, D. A.; Movva, H. C. P.; Carpenter, G.; Colombo, L.; Bourianoff, G.; Doczy, M.; Akinwande, D. et al. Cmos-compatible synthesis of large-area, high-mobility graphene by chemical vapor deposition of acetylene on cobalt thin films. ACS Nano 2011, 5, 7198-7204.
Cushing, G. W.; Johánek, V.; Navin, J. K.; Harrison, I. Graphene growth on Pt(111) by ethylene chemical vapor deposition at surface temperatures near 1000 K. J. Phys. Chem. C 2015, 119, 4759-4768.
Gao, M.; Pan, Y.; Huang, L.; Hu, H.; Zhang, L. Z.; Guo, H. M.; Du, S. X.; Gao, H. J. Epitaxial growth and structural property of graphene on Pt(111). Appl. Phys. Lett. 2011, 98, 033101.
Sutter, P.; Sadowski, J. T.; Sutter, E. Graphene on Pt(111): Growth and substrate interaction. Phys. Rev. B 2009, 80, 245411.
Gao, T.; Xie, S. B.; Gao, Y. B.; Liu, M. X.; Chen, Y. B.; Zhang, Y. F.; Liu, Z. F. Growth and atomic-scale characterizations of graphene on multifaceted textured Pt foils prepared by chemical vapor deposition. ACS Nano 2011, 5, 9194-9201.
Kang, B. J.; Mun, J. H.; Hwang, C. Y.; Cho, B. J. Monolayer graphene growth on sputtered thin film platinum. J. Appl. Phys. 2009, 106, 104309.
Imamura, G.; Saiki, K. Synthesis of nitrogen-doped graphene on Pt(111) by chemical vapor deposition. J. Phys. Chem. C 2011, 115, 10000-10005.
Oznuluer, T.; Pince, E.; Polat, E. O.; Balci, O.; Salihoglu, O.; Kocabas, C. Synthesis of graphene on gold. Appl. Phys. Lett. 2011, 98, 183101.
He, D. Y.; Zhang, P.; Li, S. H.; Luo, H. X. A novel free-standing CVD graphene platform electrode modified with AuPt hybrid nanoparticles and L-cysteine for the selective determination of epinephrine. J. Electroanal. Chem. 2018, 823, 678-687.
Gao, J. H.; Ishida, N.; Scott, I.; Fujita, D. Controllable growth of single-layer graphene on a Pd(111) substrate. Carbon 2012, 50, 1674-1680.
Di Gaspare, L.; Scaparro, A. M.; Fanfoni, M.; Fazi, L.; Sgarlata, A.; Notargiacomo, A.; Miseikis, V.; Coletti, C.; De Seta, M. Early stage of CVD graphene synthesis on Ge(001) substrate. Carbon 2018, 134, 183-188.
Tonnoir, C.; Kimouche, A.; Coraux, J.; Magaud, L.; Delsol, B.; Gilles, B.; Chapelier, C. Induced superconductivity in graphene grown on rhenium. Phys. Rev. Lett. 2013, 111, 246805.
Rut'kov, E. V.; Kuz'michev, A. V.; Gall', N. R. Carbon interaction with rhodium surface: Adsorption, dissolution, segregation, growth of graphene layers. Phys. Solid State 2011, 53, 1092-1098.
Liu, L.; Zhou, Z. H.; Guo, Q. L.; Yan, Z.; Yao, Y. X.; Goodman, D. W. The 2D growth of gold on single-layer graphene/Ru(0001): Enhancement of CO adsorption. Surf. Sci. 2011, 605, L47-L50.
Pan, Y.; Zhang, H. G.; Shi, D. X.; Sun, J. T.; Du, S. X.; Liu, F.; Gao, H. J. Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru (0001). Adv. Mater. 2009, 21, 2777-2780.
Sutter, P. W.; Flege, J. I.; Sutter, E. A. Epitaxial graphene on ruthenium. Nat. Mater. 2008, 7, 406-411.
Vázquez de Parga, A. L.; Calleja, F.; Borca, B.; Passeggi, M. C. G. Jr.; Hinarejos, J. J.; Guinea, F.; Miranda, R. Periodically rippled graphene: Growth and spatially resolved electronic structure. Phys. Rev. Lett. 2008, 100, 056807.
N'Diaye, A. T.; Coraux, J.; Plasa, T. N.; Busse, C.; Michely, T. Structure of epitaxial graphene on Ir(111). New J. Phys. 2008, 10, 043033.
Negishi, R.; Hirano, H.; Ohno, Y.; Maehashi, K.; Matsumoto, K.; Kobayashi, Y. Layer-by-layer growth of graphene layers on graphene substrates by chemical vapor deposition. Thin Solid Films 2011, 519, 6447-6452.
Wang, S. M.; Pei, Y. H.; Wang, X.; Wang, H.; Meng, Q. N.; Tian, H. W.; Zheng, X. L.; Zheng, W. T.; Liu, Y. C. Synthesis of graphene on a polycrystalline Co film by radio-frequency plasma-enhanced chemical vapour deposition. J. Phys. D Appl. Phys. 2010, 43, 455402.
Zhan, N.; Wang, G. P.; Liu, J. L. Cobalt-assisted large-area epitaxial graphene growth in thermal cracker enhanced gas source molecular beam epitaxy. Appl. Phys. A 2011, 105, 341-345.
Yazici, M. S.; Azder, M. A.; Salihoglu, O. CVD grown graphene as catalyst for acid electrolytes. Int. J. Hydrog. Energy 2018, 43, 10710-10716.
Tu, R.; Liang, Y.; Zhang, C.; Li, J.; Zhang, S.; Yang, M. J.; Li, Q. Z.; Goto, T.; Zhang, L. M.; Shi, J. et al. Fast synthesis of high-quality large-area graphene by laser CVD. Appl. Surf. Sci. 2018, 445, 204-210.
Wei, D. C.; Liu, Y. Q.; Wang, Y.; Zhang, H. L.; Huang, L. P.; Yu, G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 2009, 9, 1752-1758.
Lu, Y. F.; Lo, S. T.; Lin, J. C.; Zhang, W. J.; Lu, J. Y.; Liu, F. H.; Tseng, C. M.; Lee, Y. H.; Liang, C. T.; Li, L. J. Nitrogen-doped graphene sheets grown by chemical vapor deposition: Synthesis and influence of nitrogen impurities on carrier transport. ACS Nano 2013, 7, 6522-6532.
Mondal, T.; Bhowmick, A. K.; Krishnamoorti, R. Controlled synthesis of nitrogen-doped graphene from a heteroatom polymer and its mechanism of formation. Chem. Mater. 2015, 27, 716-725.
Zhang, Y. H.; Chen, Z. Y.; Ge, X. M.; Liang, Y. J.; Hu, S. K.; Sui, Y. P.; Yu, G. H. A waterless cleaning method of the Cu foil for CVD graphene growth. Mater. Lett. 2018, 211, 258-260.
De Luca, O.; Grillo, R.; Castriota, M.; Policicchio, A.; Penelope De Santo, M.; Desiderio, G.; Fasanella, A.; Giuseppe Agostino, R.; Cazzanelli, E.; Giarola, M. et al. Different spectroscopic behavior of coupled and freestanding monolayer graphene deposited by CVD on Cu foil. Appl. Surf. Sci. 2018, 458, 580-585.
Hui, L. S.; Whiteway, E.; Hilke, M.; Turak, A. Synergistic oxidation of CVD graphene on Cu by oxygen plasma etching. Carbon 2017, 125, 500-508.
Limbu, T. B.; Hernández, J. C.; Mendoza, F.; Katiyar, R. K.; Razink, J. J.; Makarov, V. I.; Weiner, B. R.; Morell, G. A novel approach to the layer-number-controlled and grain-size-controlled growth of high quality graphene for nanoelectronics. ACS Appl. Nano Mater. 2018, 1, 1502-1512.
Choi, J. K.; Kwak, J.; Park, S. D.; Yun, H. D.; Kim, S. Y.; Jung, M.; Kim, S. Y.; Park, K.; Kang, S.; Kim, S. D. et al. Growth of wrinkle-free graphene on texture-controlled platinum films and thermal-assisted transfer of large-scale patterned graphene. ACS Nano 2015, 9, 679-686.
Chan, N.; Balakrishna, S. G.; Klemenz, A.; Moseler, M.; Egberts, P.; Bennewitz, R. Contrast in nanoscale friction between rotational domains of graphene on Pt(111). Carbon 2017, 113, 132-138.
Nam, J.; Kim, D. C.; Yun, H.; Shin, D. H.; Nam, S.; Lee, W. K.; Hwang, J. Y.; Lee, S. W.; Weman, H.; Kim, K. S. Chemical vapor deposition of graphene on platinum: Growth and substrate interaction. Carbon 2017, 111, 733-740.
Li, H. N.; Li, Y.; Aljarb, A.; Shi, Y. M.; Li, L. J. Epitaxial growth of two-dimensional layered transition-metal dichalcogenides: Growth mechanism, controllability, and scalability. Chem. Rev. 2018, 118, 6134-6150.
Corso, M.; Auwärter, W.; Muntwiler, M.; Tamai, A.; Greber, T.; Osterwalder, J. Boron nitride nanomesh. Science 2004, 303, 217-220.
Roth, S.; Matsui, F.; Greber, T.; Osterwalder, J. Chemical vapor deposition and characterization of aligned and incommensurate graphene/hexagonal boron nitride heterostack on cu(111). Nano Lett. 2013, 13, 2668-2675.
Zhang, Y. H.; Weng, X. F.; Li, H.; Li, H. B.; Wei, M. M.; Xiao, J. P.; Liu, Z.; Chen, M. S.; Fu, Q.; Bao, X. H. Hexagonal boron nitride cover on Pt(111): A new route to tune molecule-metal interaction and metal-catalyzed reactions. Nano Lett. 2015, 15, 3616-3623.
Morchutt, C.; Björk, J.; Krotzky, S.; Gutzler, R.; Kern, K. Covalent coupling via dehalogenation on Ni(111) supported boron nitride and graphene. Chem. Commun. 2015, 51, 2440-2443.
Ren, J.; Zhang, N. C.; Zhang, H.; Peng, X. J. First-principles study of hydrogen storage on Pt (Pd)-doped boron nitride sheet. Struct. Chem. 2015, 26, 731-738.
Sutter, P.; Lahiri, J.; Albrecht, P.; Sutter, E. Chemical vapor deposition and etching of high-quality monolayer hexagonal boron nitride films. ACS Nano 2011, 5, 7303-7309.
Kuang, A. L.; Zhou, T. W.; Wang, G. Z.; Li, Y.; Wu, G.; Yuan, H. K.; Chen, H.; Yang, X. L. Dehydrogenation of ammonia borane catalyzed by pristine and defective h-BN sheets. Appl. Surf. Sci. 2016, 362, 562-571.
Yang, X. J.; Li, L. L.; Sang, W. L.; Zhao, J. L.; Wang, X. X.; Yu, C.; Zhang, X. H.; Tang, C. C. Boron nitride supported Ni nanoparticles as catalysts for hydrogen generation from hydrolysis of ammonia borane. J. Alloys Compd. 2017, 693, 642-649.
Zhang, Y. H.; Wei, M. M.; Fu, Q.; Bao, X. H. Oxygen intercalation under hexagonal boron nitride (h-BN) on Pt(111). Sci. Bull. 2015, 60, 1572-1579.
Cao, F.; Ding, Y.; Chen, L.; Chen, C.; Fang, Z. Y. Fabrication and characterization of boron nitride bulk foam from borazine. Mater. Des. 2014, 54, 610-615.
Deshmukh, V.; Nagnathappa, M.; Kharat, B.; Chaudhari, A. Theoretical study of borazine and substituted borazines using density functional theory method. J. Mol. Liq. 2014, 193, 13-22.
Duperrier, S.; Chiriac, R.; Sigala, C.; Gervais, C.; Bernard, S.; Cornu, D.; Miele, P. Thermal behaviour of a series of poly[B-(methylamino)borazine] for the preparation of boron nitride fibers. J. Eur. Ceram. Soc. 2009, 29, 851-855.
Duriez, C.; Framery, E.; Toury, B.; Toutois, P.; Miele, P.; Vaultier, M.; Bonnetot, B. Boron nitride thin fibres obtained from a new copolymer borazine-tri(methylamino)borazine precursor. J. Organomet. Chem. 2002, 657, 107-114.
Gao, S. T.; Li, B.; Li, D.; Zhang, C. R.; Liu, R. J.; Wang, S. Q. Micromorphology and structure of pyrolytic boron nitride synthesized by chemical vapor deposition from borazine. Ceram. Int. 2018, 44, 11424-11430.
Li, J. S.; Zhang, C. R.; Li, B. Preparation and characterization of boron nitride coatings on carbon fibers from borazine by chemical vapor deposition. Appl. Surf. Sci. 2011, 257, 7752-7757.
Joshi, S.; Ecija, D.; Koitz, R.; Iannuzzi, M.; Seitsonen, A. P.; Hutter, J.; Sachdev, H.; Vijayaraghavan, S.; Bischoff, F.; Seufert, K. et al. Boron nitride on Cu(111): An electronically corrugated monolayer. Nano Lett. 2012, 12, 5821-5828.
Lee, K. H.; Shin, H. J.; Lee, J.; Lee, I. Y.; Kim, G. H.; Choi, J. Y.; Kim, S. W. Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics. Nano Lett. 2012, 12, 714-718.
Whittell, G. R.; Manners, I. Advances with ammonia-borane: Improved recycling and use as a precursor to atomically thin BN films. Angew. Chem., Int. Ed. 2011, 50, 10288-10289.
Kim, S. K.; Cho, H.; Kim, M. J.; Lee, H. J.; Park, J. H.; Lee, Y. B.; Kim, H. C.; Yoon, C. W.; Nam, S. W.; Kang, S. O. Efficient catalytic conversion of ammonia borane to borazine and its use for hexagonal boron nitride (white graphene). J. Mater. Chem. A 2013, 1, 1976-1981.
Song, L.; Ci, L. J.; Lu, H.; Sorokin, P. B.; Jin, C. H.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010, 10, 3209-3215.
Koepke, J. C.; Wood, J. D.; Chen, Y. F.; Schmucker, S. W.; Liu, X. M.; Chang, N. N.; Nienhaus, L.; Do, J. W.; Carrion, E. A.; Hewaparakrama, J. et al. Role of pressure in the growth of hexagonal boron nitride thin films from ammonia-borane. Chem. Mater. 2016, 28, 4169-4179.
Liu, Z.; Song, L.; Zhao, S. Z.; Huang, J. Q.; Ma, L. L.; Zhang, J. N.; Lou, J.; Ajayan, P. M. Direct growth of graphene/hexagonal boron nitride stacked layers. Nano Lett. 2011, 11, 2032-2037.
Kim, K. K.; Hsu, A.; Jia, X. T.; Kim, S. M.; Shi, Y. M.; Hofmann, M.; Nezich, D.; Rodriguez-Nieva, J. F.; Dresselhaus, M.; Palacios, T. et al. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett. 2012, 12, 161-166.
Ismach, A.; Chou, H.; Ferrer, D. A.; Wu, Y. P.; McDonnell, S.; Floresca, H. C.; Covacevich, A.; Pope, C.; Piner, R.; Kim, M. J. et al. Toward the controlled synthesis of hexagonal boron nitride films. ACS Nano 2012, 6, 6378-6385.
Chatterjee, S.; Luo, Z. T.; Acerce, M.; Yates, D. M.; Johnson, A. T. C.; Sneddon, L. G. Chemical vapor deposition of boron nitride nanosheets on metallic substrates via decaborane/ammonia reactions. Chem. Mater. 2011, 23, 4414-4416.
Shi, Y. M.; Hamsen, C.; Jia, X. T.; Kim, K. K.; Reina, A.; Hofmann, M.; Hsu, A. L.; Zhang, K.; Li, H. N.; Juang, Z. Y. et al. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett. 2010, 10, 4134-4139.
Lu, G. Y.; Wu, T. R.; Yuan, Q. H.; Wang, H. S.; Wang, H. M.; Ding, F.; Xie, X. M.; Jiang, M. H. Synthesis of large single-crystal hexagonal boron nitride grains on Cu-Ni alloy. Nat. Commun. 2015, 6, 6160.
Pan, H.; Zhang, Y. W. Tuning the electronic and magnetic properties of MoS2 nanoribbons by strain engineering. J. Phys. Chem. C 2012, 116, 11752-11757.
Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.
Lee, T. S.; Esposito, B.; Donley, M. S.; Zabinski, J. S.; Tatarchuk, B. J. Surface and buried-interfacial reactivity of iron and MoS2: A study of laser-deposited materials. Thin Solid Films 1996, 286, 282-288.
Ataca, C.; Ciraci, S. Functionalization of single-layer MoS2 honeycomb structures. J. Phys. Chem. C 2011, 115, 13303-13311.
Shi, Y. M.; Zhou, W.; Lu, A. Y.; Fang, W. J.; Lee, Y. H.; Hsu, A. L.; Kim, S. M.; Kim, K. K.; Yang, H. Y.; Li, L. J. et al. van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 2012, 12, 2784-2791.
Yao, Y. G.; Lin, Z. Y.; Li, Z.; Song, X. J.; Moon, K. S.; Wong, C. P. Large-scale production of two-dimensional nanosheets. J. Mater. Chem. 2012, 22, 13494-13499.
Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphene-like two-dimensional materials. Chem. Rev. 2013, 113, 3766-3798.
Ding, X. L.; Ding, G. Q.; Xie, X. M.; Huang, F. Q.; Jiang, M. H. Direct growth of few layer graphene on hexagonal boron nitride by chemical vapor deposition. Carbon 2011, 49, 2522-2525.
Oshima, C.; Tanaka, N.; Itoh, A.; Rokuta, E.; Yamashita, K.; Sakurai, T. A heteroepitaxial multi-atomic-layer system of graphene and h-BN. Surf. Rev. Lett. 2000, 7, 521-525.
Fanton, M. A.; Robinson, J. A.; Puls, C.; Liu, Y.; Hollander, M. J.; Weiland, B. E.; LaBella, M.; Trumbull, K.; Kasarda, R.; Howsare, C. et al. Characterization of graphene films and transistors grown on sapphire by metal-free chemical vapor deposition. ACS Nano 2011, 5, 8062-8069.
Strupinski, W.; Grodecki, K.; Wysmolek, A.; Stepniewski, R.; Szkopek, T.; Gaskell, P. E.; Grüneis, A.; Haberer, D.; Bozek, R.; Krupka, J. et al. Graphene epitaxy by chemical vapor deposition on SiC. Nano Lett. 2011, 11, 1786-1791.
Ouerghi, A.; Kahouli, A.; Lucot, D.; Portail, M.; Travers, L.; Gierak, J.; Penuelas, J.; Jegou, P.; Shukla, A.; Chassagne, T. et al. Epitaxial graphene on cubic SiC(111)/Si(111) substrate. Appl. Phys. Lett. 2010, 96, 191910.
Sun, J.; Lindvall, N.; Cole, M. T.; Teo, K. B. K.; Yurgens, A. Large-area uniform graphene-like thin films grown by chemical vapor deposition directly on silicon nitride. Appl. Phys. Lett. 2011, 98, 252107.
Scott, A.; Dianat, A.; Börrnert, F.; Bachmatiuk, A.; Zhang, S. S.; Warner, J. H.; Borowiak-Paleń, E.; Knupfer, M.; Büchner, B.; Cuniberti, G. et al. The catalytic potential of high-κ dielectrics for graphene formation. Appl. Phys. Lett. 2011, 98, 073110.
Rümmeli, M. H.; Bachmatiuk, A.; Scott, A.; Börrnert, F.; Warner, J. H.; Hoffman, V.; Lin, J. H.; Cuniberti, G.; Büchner, B. Direct low-temperature nanographene CVD synthesis over a dielectric insulator. ACS Nano 2010, 4, 4206-4210.
Pakdel, A.; Zhi, C. Y.; Bando, Y.; Nakayama, T.; Golberg, D. Boron nitride nanosheet coatings with controllable water repellency. ACS Nano 2011, 5, 6507-6515.
Tongay, S.; Fan, W.; Kang, J.; Park, J.; Koldemir, U.; Suh, J.; Narang, D. S.; Liu, K.; Ji, J.; Li, J. B. et al. Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. Nano Lett. 2014, 14, 3185-3190.
Trung, T. N.; Seo, D. B.; Quang, N. D.; Kim, D.; Kim, E. T. Enhanced photoelectrochemical activity in the heterostructure of vertically aligned few-layer MoS2 flakes on ZnO. Electrochimica Acta 2018, 260, 150-156.
Zhan, Y. J.; Liu, Z.; Najmaei, S.; Ajayan, P. M.; Lou, J. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 2012, 8, 966-971.
Li, X. L.; Li, Y. D. Formation of MoS2 inorganic fullerenes (IFs) by the reaction of MoO3 nanobelts and S. Chem. â€"Eur. J. 2003, 9, 2726-2731.
Yan, P. F.; Wang, J.; Yang, G. F.; Lu, N. Y.; Chu, G. Y.; Zhang, X. M.; Shen, X. W. Chemical vapor deposition of monolayer MoS2 on sapphire, Si and GaN substrates. Superlatt. Microst. 2018, 120, 235-240.
Bai, H.; Ma, J.; Wang, F.; Yuan, Y.; Li, W.; Mi, W.; Han, Y.; Li, Y.; Tang, D.; Zhao, W. et al. A controllable synthesis of uniform MoS2 monolayers on annealed molybdenum foils. Mater. Lett. 2017, 204, 35-38.
Balendhran, S.; Ou, J. Z.; Bhaskaran, M.; Sriram, S.; Ippolito, S.; Vasic, Z.; Kats, E.; Bhargava, S.; Zhuiykov, S.; Kalantar-zadeh, K. Atomically thin layers of MoS2 via a two step thermal evaporation-exfoliation method. Nanoscale 2012, 4, 461-466.
Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320-2325.
Lin, Z. Y.; Zhao, Y. D.; Zhou, C. J.; Zhong, R.; Wang, X. S.; Tsang, Y. H.; Chai, Y. Controllable growth of large-size crystalline MoS2 and resist-free transfer assisted with a Cu thin film. Sci. Rep. 2015, 5, 18596.
Rahmati, B.; Hajzadeh, I.; Karimzadeh, R.; Mohseni, S. M. Facile, scalable and transfer free vertical-MoS2 nanostructures grown on Au/SiO2 patterned electrode for photodetector application. Appl. Surf. Sci. 2018, 455, 876-882.
Oh, H. M.; Han, G. H.; Kim, H.; Jeong, M. S. Influence of residual promoter to photoluminescence of CVD grown MoS2. Curr. Appl. Phys. 2016, 16, 1223-1228.
Chen, X.; Wu, B.; Liu, Y. Q. Direct preparation of high quality graphene on dielectric substrates. Chem. Soc. Rev. 2016, 45, 2057-2074.
Cuxart, M. G.; Šics, I.; Goñi, A. R.; Pach, E.; Sauthier, G.; Paradinas, M.; Foerster, M.; Aballe, L.; Fernandez, H. M.; Carlino, V. et al. Inductively coupled remote plasma-enhanced chemical vapor deposition (rPE-CVD) as a versatile route for the deposition of graphene micro- and nanostructures. Carbon 2017, 117, 331-342.
Pekdemir, S.; Onses, M. S.; Hancer, M. Low temperature growth of graphene using inductively-coupled plasma chemical vapor deposition. Surf. Coat. Technol. 2017, 309, 814-819.
Zhang, L. F.; Feng, S. P.; Xiao, S. Q.; Shen, G.; Zhang, X. M.; Nan, H. Y.; Gu, X. F.; Ostrikov, K. Layer-controllable graphene by plasma thinning and post-annealing. Appl. Surf. Sci. 2018, 441, 639-646.
Fan, L. W.; Zhang, H.; Zhang, P. P.; Sun, X. H. One-step synthesis of chlorinated graphene by plasma enhanced chemical vapor deposition. Appl. Surf. Sci. 2015, 347, 632-635.
Tang, S.; Zhang, Y.; Tian, Y.; Jin, S. Y.; Zhao, P.; Liu, F.; Zhan, R. Z.; Deng, S. Z.; Chen, J.; Xu, N. S. A two-dimensional structure graphene STM tips fabricated by microwave plasma enhanced chemical vapor deposition. Carbon 2017, 121, 337-342.
Wang, J. J.; Zhu, M. Y.; Outlaw, R. A.; Zhao, X.; Manos, D. M.; Holloway, B. C.; Mammana, V. P. Free-standing subnanometer graphite sheets. Appl. Phys. Lett. 2004, 85, 1265-1267.
Wang, J. J.; Zhu, M. Y.; Outlaw, R. A.; Zhao, X.; Manos, D. M.; Holloway, B. C. Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon 2004, 42, 2867-2872.
Zhu, M. Y.; Wang, J. J.; Holloway, B. C.; Outlaw, R. A.; Zhao, X.; Hou, K.; Shutthanandan, V.; Manos, D. M. A mechanism for carbon nanosheet formation. Carbon 2007, 45, 2229-2234.
Kumar, R.; Singh, R. K.; Singh, D. P.; Savu, R.; Moshkalev, S. A. Microwave heating time dependent synthesis of various dimensional graphene oxide supported hierarchical ZnO nanostructures and its photoluminescence studies. Mater. Des. 2016, 111, 291-300.
Kumar, R.; Singh, R. K.; Singh, D. P.; Vaz, A. R.; Yadav, R. R.; Rout, C. S.; Moshkalev, S. A. Synthesis of self-assembled and hierarchical palladium-CNTs-reduced graphene oxide composites for enhanced field emission properties. Mater. Des. 2017, 122, 110-117.
Kumar, R.; Savu, R.; Singh, R. K.; Joanni, E.; Singh, D. P.; Tiwari, V. S.; Vaz, A. R.; da Silva, E. T. S. G.; Maluta, J. R.; Kubota, L. T. et al. Controlled density of defects assisted perforated structure in reduced graphene oxide nanosheets-palladium hybrids for enhanced ethanol electro-oxidation. Carbon 2017, 117, 137-146.
Kumar, R.; Singh, R. K.; Vaz, A. R.; Savu, R.; Moshkalev, S. A. Self-assembled and one-step synthesis of interconnected 3D network of Fe3O4/reduced graphene oxide nanosheets hybrid for high-performance supercapacitor electrode. ACS Appl. Mater. Interfaces 2017, 9, 8880-8890.
Kumar, R.; Singh, R. K.; Singh, A. K.; Vaz, A. R.; Rout, C. S.; Moshkalev, S. A. Facile and single step synthesis of three dimensional reduced graphene oxide-NiCoO2 composite using microwave for enhanced electron field emission properties. Appl. Surf. Sci. 2017, 416, 259-265.
Kumar, R.; Singh, R. K.; Vaz, A. R.; Yadav, R. M.; Rout, C. S.; Moshkalev, S. A. Synthesis of reduced graphene oxide nanosheet-supported agglomerated cobalt oxide nanoparticles and their enhanced electron field emission properties. New J. Chem. 2017, 41, 8431-8436.
Kumar, R.; da Silva, E. T. S. G.; Singh, R. K.; Savu, R.; Alaferdov, A. V.; Fonseca, L. C.; Carossi, L. C.; Singh, A.; Khandka, S.; Kar, K. K. et al. Microwave-assisted synthesis of palladium nanoparticles intercalated nitrogen doped reduced graphene oxide and their electrocatalytic activity for direct-ethanol fuel cells. J. Colloid Interface Sci. 2018, 515, 160-171.
Kumar, R.; Singh, R. K.; Alaferdov, A. V.; Moshkalev, S. A. Rapid and controllable synthesis of Fe3O4 octahedral nanocrystals embedded-reduced graphene oxide using microwave irradiation for high performance lithium-ion batteries. Electrochim. Acta 2018, 281, 78-87.
Bajpai, R.; Wagner, H. D. Fast growth of carbon nanotubes using a microwave oven. Carbon 2015, 82, 327-336.
Malesevic, A.; Vitchev, R.; Schouteden, K.; Volodin, A.; Zhang, L.; van Tendeloo, G.; Vanhulsel, A.; van Haesendonck, C. Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition. Nanotechnology 2008, 19, 305604.
Vitchev, R.; Malesevic, A.; Petrov, R. H.; Kemps, R.; Mertens, M.; Vanhulsel, A.; van Haesendonck, C. Initial stages of few-layer graphene growth by microwave plasma-enhanced chemical vapour deposition. Nanotechnology 2010, 21, 095602.
Yu, J.; Qin, L.; Hao, Y. F.; Kuang, S. Y.; Bai, X. D.; Chong, Y. M.; Zhang, W. J.; Wang, E. D. Vertically aligned boron nitride nanosheets: Chemical vapor synthesis, ultraviolet light emission, and superhydrophobicity. ACS Nano 2010, 4, 414-422.
Zhou, F.; Huang, H. B.; Xiao, C. H.; Zheng, S. H.; Shi, X. Y.; Qin, J. Q.; Fu, Q.; Bao, X. H.; Feng, X. L.; Müllen, K. et al. Electrochemically scalable production of fluorine-modified graphene for flexible and high-energy ionogel-based microsupercapacitors. J. Am. Chem. Soc. 2018, 140, 8198-8205.
Huo, C. X.; Yan, Z.; Song, X. F.; Zeng, H. B. 2D materials via liquid exfoliation: A review on fabrication and applications. Sci. Bull. 2015, 60, 1994-2008.
Zhang, J.; Xu, L.; Zhou, B.; Zhu, Y. Y.; Jiang, X. Q. The pristine graphene produced by liquid exfoliation of graphite in mixed solvent and its application to determination of dopamine. J. Colloid Interface Sci. 2018, 513, 279-286.
Haar, S.; El Gemayel, M.; Shin, Y.; Melinte, G.; Squillaci, M. A.; Ersen, O.; Casiraghi, C.; Ciesielski, A.; Samorì, P. Enhancing the liquid-phase exfoliation of graphene in organic solvents upon addition of n-octylbenzene. Sci. Rep. 2015, 5, 16684.
Coleman, J. N. Liquid exfoliation of defect-free graphene. Acc. Chem. Res. 2013, 46, 14-22.
Gupta, A.; Arunachalam, V.; Vasudevan, S. Liquid-phase exfoliation of MoS2 nanosheets: The critical role of trace water. J. Phys. Chem. Lett. 2016, 7, 4884-4890.
Jawaid, A.; Nepal, D.; Park, K.; Jespersen, M.; Qualley, A.; Mirau, P.; Drummy, L. F.; Vaia, R. A. Mechanism for liquid phase exfoliation of MoS2. Chem. Mater. 2016, 28, 337-348.
Wang, D. L.; Wu, F. M.; Song, Y. H.; Li, C.; Zhou, L. Large-scale production of defect-free MoS2 nanosheets via pyrene-assisted liquid exfoliation. J. Alloys Compd. 2017, 728, 1030-1036.
Grayfer, E. D.; Kozlova, M. N.; Fedorov, V. E. Colloidal 2D nanosheets of MoS2 and other transition metal dichalcogenides through liquid-phase exfoliation. Adv. Colloid Interface Sci. 2017, 245, 40-61.
Li, X. L.; Zhang, G. Y.; Bai, X. D.; Sun, X. M.; Wang, X. R.; Wang, E. G.; Dai, H. J. Highly conducting graphene sheets and Langmuir-Blodgett films. Nat. Nanotechnol. 2008, 3, 538-542.
Stankovich, S.; Piner, R. D.; Chen, X. Q.; Wu, N. Q.; Nguyen, S. T.; Ruoff, R. S. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J. Mater. Chem. 2006, 16, 155-158.
Bourlinos, A. B.; Gournis, D.; Petridis, D.; Szabó, T.; Szeri, A.; Dékány, I. Graphite oxide: Chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 2003, 19, 6050-6055.
Schniepp, H. C.; Li, J. L.; McAllister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud'homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 2006, 110, 8535-8539.
Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y. Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558-1565.
Lomeda, J. R.; Doyle, C. D.; Kosynkin, D. V.; Hwang, W. F.; Tour, J. M. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J. Am. Chem. Soc. 2008, 130, 16201-16206.
Xu, Y. X.; Bai, H.; Lu, G. W.; Li, C.; Shi, G. Q. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. 2008, 130, 5856-5857.
Becerril, H. A.; Mao, J.; Liu, Z. F.; Stoltenberg, R. M.; Bao, Z. N.; Chen, Y. S. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2008, 2, 463-470.
Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270-274.
Si, Y. C.; Samulski, E. T. Synthesis of water soluble graphene. Nano Lett. 2008, 8, 1679-1682.
Gómez-Navarro, C.; Weitz, R. T.; Bittner, A. M.; Scolari, M.; Mews, A.; Burghard, M.; Kern, K. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 2007, 7, 3499-3503.
Fan, X. B.; Peng, W. C.; Li, Y.; Li, X. Y.; Wang, S. L.; Zhang, G. L.; Zhang, F. B. Deoxygenation of exfoliated graphite oxide under alkaline conditions: A green route to graphene preparation. Adv. Mater. 2008, 20, 4490-4493.
Paredes, J. I.; Villar-Rodil, S.; Solís-Fernández, P.; Martínez-Alonso, A.; Tascón, J. M. D. Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide. Langmuir 2009, 25, 5957-5968.
Geng, Y.; Wang, S. J.; Kim, J. K. Preparation of graphite nanoplatelets and graphene sheets. J. Colloid Interface Sci. 2009, 336, 592-598.
Wang, G. X.; Yang, J.; Park, J.; Gou, X. L.; Wang, B.; Liu, H.; Yao, J. Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 2008, 112, 8192-8195.
Robinson, J. T.; Perkins, F. K.; Snow, E. S.; Wei, Z. Q.; Sheehan, P. E. Reduced graphene oxide molecular sensors. Nano Lett. 2008, 8, 3137-3140.
Wu, S. X.; Yin, Z. Y.; He, Q. Y.; Huang, X.; Zhou, X. Z.; Zhang, H. Electrochemical deposition of semiconductor oxides on reduced graphene oxide-based flexible, transparent, and conductive electrodes. J. Phys. Chem. C 2010, 114, 11816-11821.
Wei, Z. Q.; Barlow, D. E.; Sheehan, P. E. The assembly of single-layer graphene oxide and graphene using molecular templates. Nano Lett. 2008, 8, 3141-3145.
Bai, H.; Xu, Y. X.; Zhao, L.; Li, C.; Shi, G. Q. Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chem. Commun. 2009, 1667-1669.
Akhavan, O. The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets. Carbon 2010, 48, 509-519.
Lv, W.; Tang, D. M.; He, Y. B.; You, C. H.; Shi, Z. Q.; Chen, X. C.; Chen, C. M.; Hou, P. X.; Liu, C.; Yang, Q. H. Low-temperature exfoliated graphenes: Vacuum-promoted exfoliation and electrochemical energy storage. ACS Nano 2009, 3, 3730-3736.
Park, J. S.; Cho, S. M.; Kim, W. J.; Park, J.; Yoo, P. J. Fabrication of graphene thin films based on layer-by-layer self-assembly of functionalized graphene nanosheets. ACS Appl. Mater. Interfaces 2011, 3, 360-368.
Deng, D. H.; Pan, X. L.; Yu, L.; Cui, Y.; Jiang, Y. P.; Qi, J.; Li, W. X.; Fu, Q.; Ma, X. C.; Xue, Q. K. et al. Toward N-doped graphene via solvothermal synthesis. Chem. Mater. 2011, 23, 1188-1193.
Feng, L. Y.; Chen, Y. G.; Chen, L. Easy-to-operate and low-temperature synthesis of gram-scale nitrogen-doped graphene and its application as cathode catalyst in microbial fuel cells. ACS Nano 2011, 5, 9611-9618.
Geng, D. S.; Hu, Y. H.; Li, Y. L.; Li, R. Y.; Sun, X. L. One-pot solvothermal synthesis of doped graphene with the designed nitrogen type used as a Pt support for fuel cells. Electrochem. Commun. 2012, 22, 65-68.
Li, Q.; Li, M.; Chen, Z. Q.; Li, C. M. Simple solution route to uniform MoS2 particles with randomly stacked layers. Mater. Res. Bull. 2004, 39, 981-986.
Chen, X. Y.; Li, H. L.; Wang, S. M.; Yang, M.; Qi, Y. X. Biomolecule-assisted hydrothermal synthesis of molybdenum disulfide microspheres with nanorods. Mater. Lett. 2012, 66, 22-24.
Li, G. W.; Li, C. S.; Tang, H.; Cao, K. S.; Chen, J.; Wang, F. F.; Jin, Y. Synthesis and characterization of hollow MoS2 microspheres grown from MoO3 precursors. J. Alloys Compd. 2010, 501, 275-281.
Liu, Y. D.; Ren, L.; Qi, X.; Yang, L. W.; Hao, G. L.; Li, J.; Wei, X. L.; Zhong, J. X. Preparation, characterization and photoelectrochemical property of ultrathin MoS2 nanosheets via hydrothermal intercalation and exfoliation route. J. Alloys Compd. 2013, 571, 37-42.
Lin, H. T.; Chen, X. Y.; Li, H. L.; Yang, M.; Qi, Y. X. Hydrothermal synthesis and characterization of MoS2 nanorods. Mater. Lett. 2010, 64, 1748-1750.
Wei, R. H.; Yang, H. B.; Du, K.; Fu, W. Y.; Tian, Y. M.; Yu, Q. J.; Liu, S. K.; Li, M. H.; Zou, G. T. A facile method to prepare MoS2 with nanoflower-like morphology. Mater. Chem. Phys. 2008, 108, 188-191.
Sen, U. K.; Mitra, S. High-rate and high-energy-density lithium-ion battery anode containing 2D MoS2 nanowall and cellulose binder. ACS Appl. Mater. Interfaces 2013, 5, 1240-1247.
Huang, W. Z.; Xu, Z. D.; Liu, R.; Ye, X. F.; Zheng, Y. F. Tungstenic acid induced assembly of hierarchical flower-like MoS2 spheres. Mater. Res. Bull. 2008, 43, 2799-2805.
Gong, H. Q.; Zheng, F.; Li, Z.; Li, Y.; Hu, P. F.; Gong, Y.; Song, S. L.; Zhan, F. Y.; Zhen, Q. Hydrothermal preparation of MoS2 nanoflake arrays on Cu foil with enhanced supercapacitive property. Electrochim. Acta 2017, 227, 101-109.
Ding, S. J.; Zhang, D. Y.; Chen, J. S.; Lou, X. W. Facile synthesis of hierarchical MoS2 microspheres composed of few-layered nanosheets and their lithium storage properties. Nanoscale 2012, 4, 95-98.
Peng, Y. Y.; Meng, Z. Y.; Zhong, C.; Lu, J.; Yu, W. C.; Jia, Y. B.; Qian, Y. T. Hydrothermal synthesis and characterization of single-molecular-layer MoS2 and MoSe2. Chem. Lett. 2001, 30, 772-773.
Zhu, P.; Chen, Y.; Zhou, Y.; Yang, Z. X.; Wu, D.; Xiong, X.; Ouyang, F. P. Defect-rich MoS2 nanosheets vertically grown on graphene-protected Ni foams for high efficient electrocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2018, 43, 14087-14095.
Senthil Kumar, S. M.; Selvakumar, K.; Thangamuthu, R.; Karthigai Selvi, A.; Ravichandran, S.; Sozhan, G.; Rajasekar, K.; Navascues, N.; Irusta, S. Hydrothermal assisted morphology designed MoS2 material as alternative cathode catalyst for PEM electrolyser application. Int. J. Hydrogen Energy 2016, 41, 13331-13340.
Tiwary, C. S.; Javvaji, B.; Kumar, C.; Mahapatra, D. R.; Ozden, S.; Ajayan, P. M.; Chattopadhyay, K. Chemical-free graphene by unzipping carbon nanotubes using cryo-milling. Carbon 2015, 89, 217-224.
Mohammadi, S.; Kolahdouz, Z.; Darbari, S.; Mohajerzadeh, S.; Masoumi, N. Graphene formation by unzipping carbon nanotubes using a sequential plasma assisted processing. Carbon 2013, 52, 451-463.
Dhakate, S. R.; Chauhan, N.; Sharma, S.; Mathur, R. B. The production of multi-layer graphene nanoribbons from thermally reduced unzipped multi-walled carbon nanotubes. Carbon 2011, 49, 4170-4178.
Cataldo, F.; Compagnini, G.; Patané, G.; Ursini, O.; Angelini, G.; Ribic, P. R.; Margaritondo, G.; Cricenti, A.; Palleschi, G.; Valentini, F. Graphene nanoribbons produced by the oxidative unzipping of single-wall carbon nanotubes. Carbon 2010, 48, 2596-2602.
Jiao, L. Y.; Zhang, L.; Wang, X. R.; Diankov, G.; Dai, H. J. Narrow graphene nanoribbons from carbon nanotubes. Nature 2009, 458, 877-880.
Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. K.; Tour, J. M. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 2009, 458, 872-876.
Cano-Márquez, A. G.; Rodríguez-Macías, F. J.; Campos-Delgado, J.; Espinosa-González, C. G.; Tristán-López, F.; Ramírez-González, D.; Cullen, D. A.; Smith, D. J.; Terrones, M.; Vega-Cantú, Y. I. Ex-MWNTs: Graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Lett. 2009, 9, 1527-1533.
Ozden, S.; Autreto, P. A. S.; Tiwary, C. S.; Khatiwada, S.; Machado, L.; Galvao, D. S.; Vajtai, R.; Barrera, E. V.; Ajayan, P. M. Unzipping carbon nanotubes at high impact. Nano Lett. 2014, 14, 4131-4137.
Vadahanambi, S.; Jung, J. H.; Kumar, R.; Kim, H. J.; Oh, I. K. An ionic liquid-assisted method for splitting carbon nanotubes to produce graphene nano-ribbons by microwave radiation. Carbon 2013, 53, 391-398.
Erickson, K. J.; Gibb, A. L.; Sinitskii, A.; Rousseas, M.; Alem, N.; Tour, J. M.; Zettl, A. K. Longitudinal splitting of boron nitride nanotubes for the facile synthesis of high quality boron nitride nanoribbons. Nano Lett. 2011, 11, 3221-3226.
Zeng, H. B.; Zhi, C. Y.; Zhang, Z. H.; Wei, X. L.; Wang, X. B.; Guo, W. L.; Bando, Y.; Golberg, D. "White graphenes": Boron nitride nanoribbons via boron nitride nanotube unwrapping. Nano Lett. 2010, 10, 5049-5055.
Vasu, K.; Yamijala, S. S. R. K. C.; Zak, A.; Gopalakrishnan, K.; Pati, S. K.; Rao, C. N. R. Clean WS2 and MoS2 nanoribbons generated by laser-induced unzipping of the nanotubes. Small 2015, 11, 3916-3920.
Silva, A. A.; Pinheiro, R. A.; Rodrigues, A. C.; Baldan, M. R.; Trava-Airoldi, V. J.; Corat, E. J. Graphene sheets produced by carbon nanotubes unzipping and their performance as supercapacitor. Appl. Surf. Sci. 2018, 446, 201-208.
Wu, Z. S.; Ren, W. C.; Gao, L. B.; Liu, B. L.; Zhao, J. P.; Cheng, H. M. Efficient synthesis of graphene nanoribbons sonochemically cut from graphene sheets. Nano Res. 2010, 3, 16-22.
Kumar, R.; Tiwari, R. S.; Srivastava, O. N. Scalable synthesis of aligned carbon nanotubes bundles using green natural precursor: Neem oil. Nanoscale Res. Lett. 2011, 6, 92.
Awasthi, K.; Kumar, R.; Tiwari, R. S.; Srivastava, O. N. Large scale synthesis of bundles of aligned carbon nanotubes using a natural precursor: Turpentine oil. J. Exp. Nanosci. 2010, 5, 498-508.
Zhuang, N. F.; Liu, C. C.; Jia, L. N.; Wei, L.; Cai, J. D.; Guo, Y. L.; Zhang, Y. F.; Hu, X. L.; Chen, J. Z.; Chen, X. D. et al. Clean unzipping by steam etching to synthesize graphene nanoribbons. Nanotechnology 2013, 24, 325604.
Jiao, L. Y.; Zhang, L.; Ding, L.; Liu, J.; Dai, H. J. Aligned graphene nanoribbons and crossbars from unzipped carbon nanotubes. Nano Res. 2010, 3, 387-394.
Shinde, D. B.; Majumder, M.; Pillai, V. K. Counter-ion dependent, longitudinal unzipping of multi-walled carbon nanotubes to highly conductive and transparent graphene nanoribbons. Sci. Rep. 2014, 4, 4363.
Shinde, D. B.; Debgupta, J.; Kushwaha, A.; Aslam, M.; Pillai, V. K. Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons. J. Am. Chem. Soc. 2011, 133, 4168-4171.
Li, Y. S.; Liao, J. L.; Wang, S. Y.; Chiang, W. H. Intercalation-assisted longitudinal unzipping of carbon nanotubes for green and scalable synthesis of graphene nanoribbons. Sci. Rep. 2016, 6, 22755.
Yang, M.; Hu, L. G.; Tang, X. W.; Zhang, H. D.; Zhu, H. X.; Fan, T. X.; Zhang, D. Longitudinal splitting versus sequential unzipping of thick-walled carbon nanotubes: Towards controllable synthesis of high-quality graphitic nanoribbons. Carbon 2016, 110, 480-489.
Rollings, E.; Gweon, G. H.; Zhou, S. Y.; Mun, B. S.; McChesney, J. L.; Hussain, B. S.; Fedorov, A. V.; First, P. N.; de Heer, W. A.; Lanzara, A. Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate. J. Phys. Chem. Solids 2006, 67, 2172-2177.
Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S.; Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229-1232.
Chen, Z. H.; Lin, Y. M.; Rooks, M. J.; Avouris, P. Graphene nano-ribbon electronics. Phys. E 2007, 40, 228-232.
Han, M. Y.; Özyilmaz, B.; Zhang, Y. B.; Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 2007, 98, 206805.
Yang, X. Y.; Dou, X.; Rouhanipour, A.; Zhi, L. J.; Räder, H. J.; Müllen, K. Two-dimensional graphene nanoribbons. J. Am. Chem. Soc. 2008, 130, 4216-4217.
Campos-Delgado, J.; Romo-Herrera, J. M.; Jia, X. T.; Cullen, D. A.; Muramatsu, H.; Kim, Y. A.; Hayashi, T.; Ren, Z. F.; Smith, D. J.; Okuno, Y. et al. Bulk production of a new form of sp2 carbon: Crystalline graphene nanoribbons. Nano Lett. 2008, 8, 2773-2778.
Valentini, L. Formation of unzipped carbon nanotubes by CF4 plasma treatment. Diam. Relat. Mater. 2011, 20, 445-448.
Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. K.; Tour, J. M. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 2009, 458, 872-876.
Higginbotham, A. L.; Kosynkin, D. V.; Sinitskii, A.; Sun, Z. Z.; Tour, J. M. Lower-defect graphene oxide nanoribbons from multiwalled carbon nanotubes. ACS Nano 2010, 4, 2059-2069.
Jiao, L. Y.; Zhang, L.; Wang, X. R.; Diankov, G.; Dai, H. J. Narrow graphene nanoribbons from carbon nanotubes. Nature 2009, 458, 877-880.
Kang, Y. R.; Li, Y. L.; Deng, M. Y. Precise unzipping of flattened carbon nanotubes to regular graphene nanoribbons by acid cutting along the folded edges. J. Mater. Chem. 2012, 22, 16283-16287.
Cho, S.; Kikuchi, K.; Kawasaki, A. Radial followed by longitudinal unzipping of multiwalled carbon nanotubes. Carbon 2011, 49, 3865-3872.
Kumar, P.; Panchakarla, L. S.; Rao, C. N. R. Laser-induced unzipping of carbon nanotubes to yield graphene nanoribbons. Nanoscale 2011, 3, 2127-2129.
Zheng, M.; Takei, K.; Hsia, B.; Fang, H.; Zhang, X. B.; Ferralis, N.; Ko, H.; Chueh, Y. L.; Zhang, Y. G.; Maboudian, R. et al. Metal-catalyzed crystallization of amorphous carbon to graphene. Appl. Phys. Lett. 2010, 96, 063110.
García, J. M.; He, R.; Jiang, M. P.; Kim, P.; Pfeiffer, L. N.; Pinczuk, A. Multilayer graphene grown by precipitation upon cooling of nickel on diamond. Carbon 2011, 49, 1006-1012.
Sutter, P.; Lahiri, J.; Zahl, P.; Wang, B.; Sutter, E. Scalable synthesis of uniform few-layer hexagonal boron nitride dielectric films. Nano Lett. 2013, 13, 276-281.
Nakhaie, S.; Wofford, J. M.; Schumann, T.; Jahn, U.; Ramsteiner, M.; Hanke, M.; Lopes, J. M. J.; Riechert, H. Synthesis of atomically thin hexagonal boron nitride films on nickel foils by molecular beam epitaxy. Appl. Phys. Lett. 2015, 106, 213108.
Tonkikh, A. A.; Voloshina, E. N.; Werner, P.; Blumtritt, H.; Senkovskiy, B.; Güntherodt, G.; Parkin, S. S. P.; Dedkov, Y. S. Structural and electronic properties of epitaxial multilayer h-BN on Ni(111) for spintronics applications. Sci. Rep. 2016, 6, 23547.
Yin, Z. Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. D.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano 2012, 6, 74-80.
Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695-2700.
Ramakrishna Matte, H. S. S.; Gomathi, A.; Manna, A. K.; Late, D. J.; Datta, R.; Pati, S. K.; Rao, C. N. R. MoS2 and WS2 analogues of graphene. Angew. Chem., Int. Ed. 2010, 49, 4059-4062.
Zeng, Z. Y.; Yin, Z. Y.; Huang, X.; Li, H.; He, Q. Y.; Lu, G.; Boey, F.; Zhang, H. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angew. Chem., Int. Ed. 2011, 50, 11093-11097.
Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M. W.; Chhowalla, M. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011, 11, 5111-5116.
Loh, T. A. J.; Chua, D. H. C. Growth mechanism of pulsed laser fabricated few-layer MoS2 on metal substrates. ACS Appl. Mater. Interfaces 2014, 6, 15966-15971.
Late, D. J.; Shaikh, P. A.; Khare, R.; Kashid, R. V.; Chaudhary, M.; More, M. A.; Ogale, S. B. Pulsed laser-deposited MoS2 thin films on W and Si: Field emission and photoresponse studies. ACS Appl. Mater. Interfaces 2014, 6, 15881-15888.
Serrao, C. R.; Diamond, A. M.; Hsu, S. L.; You, L.; Gadgil, S.; Clarkson, J.; Carraro, C.; Maboudian, R.; Hu, C. M.; Salahuddin, S. Highly crystalline MoS2 thin films grown by pulsed laser deposition. Appl. Phys. Lett. 2015, 106, 052101.
Muratore, C.; Hu, J. J.; Wang, B.; Haque, M. A.; Bultman, J. E.; Jespersen, M. L.; Shamberger, P. J.; McConney, M. E.; Naguy, R. D.; Voevodin, A. A. Continuous ultra-thin MoS2 films grown by low-temperature physical vapor deposition. Appl. Phys. Lett. 2014, 104, 261604.
Helveg, S.; Lauritsen, J. V.; Lægsgaard, E.; Stensgaard, I.; Nørskov, J. K.; Clausen, B. S.; Topsøe, H.; Besenbacher, F. Atomic-scale structure of single-layer MoS2 nanoclusters. Phys. Rev. Lett. 2000, 84, 951-954.
Sun, Z. Z.; Yan, Z.; Yao, J.; Beitler, E.; Zhu, Y.; Tour, J. M. Growth of graphene from solid carbon sources. Nature 2010, 468, 549-552.
Shin, H. J.; Choi, W. M.; Yoon, S. M.; Han, G. H.; Woo, Y. S.; Kim, E. S.; Chae, S. J.; Li, X. S.; Benayad, A.; Loc, D. D. et al. Transfer-free growth of few-layer graphene by self-assembled monolayers. Adv. Mater. 2011, 23, 4392-4397.
Yan, Z.; Peng, Z. W.; Sun, Z. Z.; Yao, J.; Zhu, Y.; Liu, Z.; Ajayan, P. M.; Tour, J. M. Growth of bilayer graphene on insulating substrates. ACS Nano 2011, 5, 8187-8192.
Herron, C. R.; Coleman, K. S.; Edwards, R. S.; Mendis, B. G. Simple and scalable route for the "bottom-up" synthesis of few-layer graphene platelets and thin films. J. Mater. Chem. 2011, 21, 3378-3383.
Memon, N. K.; Tse, S. D.; Chhowalla, M.; Kear, B. H. Role of substrate, temperature, and hydrogen on the flame synthesis of graphene films. Proc. Combust. Inst. 2013, 34, 2163-2170.
Memon, N. K.; Tse, S. D.; Al-Sharab, J. F.; Yamaguchi, H.; Goncalves, A. M. B.; Kear, B. H.; Jaluria, Y.; Andrei, E. Y.; Chhowalla, M. Flame synthesis of graphene films in open environments. Carbon 2011, 49, 5064-5070.
Liu, H. Z.; Zhu, S. Y.; Jiang, W. T. Rapid flame synthesis of multilayer graphene on SiO2/Si substrate. J. Mater. Sci. Mater. Electron. 2016, 27, 2795-2799.
Cai, L. L.; McClellan, C. J.; Koh, A. L.; Li, H.; Yalon, E.; Pop, E.; Zheng, X. L. Rapid flame synthesis of atomically thin MoO3 down to monolayer thickness for effective hole doping of WSe2. Nano Lett. 2017, 17, 3854-3861.
Guo, L. J.; Peng, J. Growth of graphene sheets under an oxyacetylene flame without a catalyst. New Carbon Mater. 2017, 32, 188-192.
Mohammed, M. K. A.; Al-Mousoi, A. K.; Khalaf, H. A. Deposition of multi-layer graphene (MLG) film on glass slide by flame synthesis technique. Optik 2016, 127, 9848-9852.
Zhang, J.; Tian, T.; Chen, Y. H.; Niu, Y. F.; Tang, J.; Qin, L. C. Synthesis of graphene from dry ice in flames and its application in supercapacitors. Chem. Phys. Lett. 2014, 591, 78-81.
Zhao, J. G.; Guo, Y.; Li, Z. P.; Guo, Q. H.; Shi, J. H.; Wang, L. H.; Fan, J. F. An approach for synthesizing graphene with calcium carbonate and magnesium. Carbon 2012, 50, 4939-4944.
Chakrabarti, A.; Lu, J.; Skrabutenas, J. C.; Xu, T.; Xiao, Z. L.; Maguire, J. A.; Hosmane, N. S. Conversion of carbon dioxide to few-layer graphene. J. Mater. Chem. 2011, 21, 9491-9493.
Liu, N.; Luo, F.; Wu, H. X.; Liu, Y. H.; Zhang, C.; Chen, J. One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv. Funct. Mater. 2008, 18, 1518-1525.
Gomes, F. O. V.; Pokle, A.; Marinkovic, M.; Balster, T.; Canavan, M.; Fleischer, K.; Anselmann, R.; Nicolosi, V.; Wagner, V. Influence of temperature on morphological and optical properties of MoS2 layers as grown based on solution processed precursor. Thin Solid Films 2018, 645, 38-44.
Shahzad, R.; Kim, T.; Kang, S. W. Effects of temperature and pressure on sulfurization of molybdenum nano-sheets for MoS2 synthesis. Thin Solid Films 2017, 641, 79-86.
Schwenke, A. M.; Hoeppener, S.; Schubert, U. S. Synthesis and modification of carbon nanomaterials utilizing microwave heating. Adv. Mater. 2015, 27, 4113-4141.
Kim, H. R.; Lee, S. H.; Lee, K. H. Scalable production of large single-layered graphenes by microwave exfoliation "in deionized water". Carbon 2018, 134, 431-438.
Sreedhar, D.; Devireddy, S.; Veeredhi, V. R. Synthesis and study of reduced graphene oxide layers under microwave irradiation. Mater. Today Proc. 2018, 5, 3403-3410.
Zhao, X.; Gou, L. Comparative analysis of graphene grown on copper and nickel sheet by microwave plasma chemical vapor deposition. Vacuum 2018, 153, 48-52.
Dato, A.; Radmilovic, V.; Lee, Z.; Phillips, J.; Frenklach, M. Substrate-free gas-phase synthesis of graphene sheets. Nano Lett. 2008, 8, 2012-2016.
Dato, A.; Frenklach, M. Substrate-free microwave synthesis of graphene: Experimental conditions and hydrocarbon precursors. New J. Phys. 2010, 12, 125013.
Kim, C. D.; Min, B. K.; Jung, W. S. Preparation of graphene sheets by the reduction of carbon monoxide. Carbon 2009, 47, 1610-1612.
Vollath, D.; Szabó, D. V. Synthesis of nanocrystalline MoS2 and WS2 in a microwave plasma. Mater. Lett. 1998, 35, 236-244.
Vollath, D.; Szabó, D. V. Nanoparticles from compounds with layered structures. Acta Mater. 2000, 48, 953-967.
Liu, N.; Wang, X. Z.; Xu, W. Y.; Hu, H.; Liang, J. J.; Qiu, J. S. Microwave-assisted synthesis of MoS2/graphene nanocomposites for efficient hydrodesulfurization. Fuel 2014, 119, 163-169.
Si, P. Z.; Zhang, M.; Zhang, Z. D.; Zhao, X. G.; Ma, X. L.; Geng, D. Y. Synthesis and structure of multi-layered WS2(CoS), MoS2(Mo) nanocapsules and single-layered WS2(W) nanoparticles. J. Mater. Sci. 2005, 40, 4287-4291.
Hu, J. J.; Bultman, J. E.; Zabinski, J. S. Inorganic fullerene-like nanoparticles produced by arc discharge in water with potential lubricating ability. Tribol. Lett. 2004, 17, 543-546.
Chhowalla, M.; Amaratunga, G. A. J. Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear. Nature 2000, 407, 164-167.
Alexandrou, I.; Sano, N.; Burrows, A.; Meyer, R. R.; Wang, H.; Kirkland, A. I.; Kiely, C. J.; Amaratunga, G. A. J. Structural investigation of MoS2 core-shell nanoparticles formed by an arc discharge in water. Nanotechnology 2003, 14, 913-917.
Sano, N.; Wang, H. L.; Chhowalla, M.; Alexandrou, I.; Amaratunga, G. A. J.; Naito, M.; Kanki, T. Fabrication of inorganic molybdenum disulfide fullerenes by arc in water. Chem. Phys. Lett. 2003, 368, 331-337.
Gong, C.; Huang, C. M.; Miller, J.; Cheng, L. X.; Hao, Y. F.; Cobden, D.; Kim, J.; Ruoff, R. S.; Wallace, R. M.; Cho, K. et al. Metal contacts on physical vapor deposited monolayer MoS2. ACS Nano 2013, 7, 11350-11357.
Sen, R.; Govindaraj, A.; Suenaga, K.; Suzuki, S.; Kataura, H.; Iijima, S.; Achiba, Y. Encapsulated and hollow closed-cage structures of WS2 and MoS2 prepared by laser ablation at 450-1050 ~C. Chem. Phys. Lett. 2001, 340, 242-248.
Parilla, P. A.; Dillon, A. C.; Jones, K. M.; Riker, G.; Schulz, D. L.; Ginley, D. S.; Heben, M. J. The first true inorganic fullerenes? Nature 1999, 397, 114.
Mdleleni, M. M.; Hyeon, T.; Suslick, K. S. Sonochemical synthesis of nanostructured molybdenum sulfide. J. Am. Chem. Soc. 1998, 120, 6189-6190.
Dhas, N. A.; Suslick, K. S. Sonochemical preparation of hollow nanospheres and hollow nanocrystals. J. Am. Chem. Soc. 2005, 127, 2368-2369.
Wang, K. P.; Wang, J.; Fan, J. T.; Lotya, M.; O'Neill, A.; Fox, D.; Feng, Y. Y.; Zhang, X. Y.; Jiang, B. X.; Zhao, Q. Z. et al. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano 2013, 7, 9260-9267.
Cho, A.; Koh, J. H.; Lee, S. I.; Moon, S. H. Activity and thermal stability of sonochemically synthesized MoS2 and Ni-promoted MoS2 catalysts. Catal. Today 2010, 149, 47-51.
Mastai, Y.; Homyonfer, M.; Gedanken, A.; Hodes, G. Room temperature sonoelectrochemical synthesis of molybdenum sulfide fullerene-like nanoparticles. Adv. Mater. 1999, 11, 1010-1013.
Audronis, M.; Leyland, A.; Kelly, P. J.; Matthews, A. Composition and structure-property relationships of chromium-diboride/molybdenum-disulphide PVD nanocomposite hard coatings deposited by pulsed magnetron sputtering. Appl. Phys. A 2008, 91, 77-86.
Spalvins, T. Morphological and frictional behavior of sputtered MoS2 films. Thin Solid Films 1982, 96, 17-24.
Bichsel, R.; Buffat, P.; Levy, F. Correlation between process conditions, chemical composition and morphology of MoS2 films prepared by RF planar magnetron sputtering. J. Phys. D Appl. Phys. 1986, 19, 1575-1585.
Spalvins, T. Deposition of MoS2 films by physical sputtering and their lubrication properties in vacuum. A S L E Trans. 1969, 12, 36-43.
Wu, Z. S.; Zhou, G. M.; Yin, L. C.; Ren, W. C.; Li, F.; Cheng, H. M. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 2012, 1, 107-131.
Dong, Y. F.; Wu, Z. S.; Ren, W. C.; Cheng, H. M.; Bao, X. H. Graphene: A promising 2D material for electrochemical energy storage. Sci. Bull. 2017, 62, 724-740.
Yang, J.; Liu, W.; Niu, H.; Cheng, K.; Ye, K.; Zhu, K.; Wang, G. L.; Cao, D. X.; Yan, J. Ultrahigh energy density battery-type asymmetric supercapacitors: NiMoO4 nanorod-decorated graphene and graphene/Fe2O3 quantum dots. Nano Res. 2018, 11, 4744-4758.
Kumar, R.; Kim, H. J.; Park, S.; Srivastava, A.; Oh, I. K. Graphene-wrapped and cobalt oxide-intercalated hybrid for extremely durable super-capacitor with ultrahigh energy and power densities. Carbon 2014, 79, 192-202.
Kumar, R.; Singh, R. K.; Dubey, P. K.; Singh, D. P.; Yadav, R. M. Self-assembled hierarchical formation of conjugated 3D cobalt oxide nanobead-CNT-graphene nanostructure using microwaves for high-performance supercapacitor electrode. ACS Appl. Mater. Interfaces 2015, 7, 15042-15051.
Li, P. P.; Jin, Z. Y.; Peng, L. L.; Zhao, F.; Xiao, D.; Jin, Y.; Yu, G. H. Stretchable all-gel-state fiber-shaped supercapacitors enabled by macromolecularly interconnected 3D graphene/nanostructured conductive polymer hydrogels. Adv. Mater. 2018, 30, 1800124.
Bakandritsos, A.; Chronopoulos, D. D.; Jakubec, P.; Pykal, M.; Čépe, K.; Steriotis, T.; Kalytchuk, S.; Petr, M.; Zbořil, R.; Otyepka, M. High-performance supercapacitors based on a zwitterionic network of covalently functionalized graphene with iron tetraaminophthalocyanine. Adv. Funct. Mater. 2018, 28, 1801111.
Nagar, B.; Dubal, D. P.; Pires, L.; Merkoçi, A.; Gómez-Romero, P. Design and fabrication of printed paper-based hybrid micro-supercapacitor by using graphene and redox-active electrolyte. ChemSusChem 2018, 11, 1849-1856.
Luo, Y. X.; Zhang, Q. E.; Hong, W. J.; Xiao, Z. Y.; Bai, H. A high-performance electrochemical supercapacitor based on a polyaniline/reduced graphene oxide electrode and a copper(â…¡) ion active electrolyte. Phys. Chem. Chem. Phys. 2018, 20, 131-136.
Yao, B.; Chandrasekaran, S.; Zhang, J.; Xiao, W.; Qian, F.; Zhu, C.; Duoss, E. B.; Spadaccini, C. M.; Worsley, M. A.; Li, Y. Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading. Joule 2019, 3, 459-470.
Chen, N. N.; Ni, L.; Zhou, J. H.; Zhu, G. Y.; Kang, Q.; Zhang, Y.; Chen, S. Y.; Zhou, W. X.; Lu, C. L.; Chen, J. et al. Sandwich-like holey graphene/PANI/graphene nanohybrid for ultrahigh-rate supercapacitor. ACS Appl. Energy Mater. 2018, 1, 5189-5197.
Manjakkal, L.; Núñez, C. G.; Dang, W. T.; Dahiya, R. Flexible self-charging supercapacitor based on graphene-Ag-3D graphene foam electrodes. Nano Energy 2018, 51, 604-612.
Zhang, Z. Y.; Liu, M. L.; Tian, X.; Xu, P.; Fu, C. Y.; Wang, S.; Liu, Y. Q. Scalable fabrication of ultrathin free-standing graphene nanomesh films for flexible ultrafast electrochemical capacitors with AC line-filtering performance. Nano Energy 2018, 50, 182-191.
Zhang, S.; Sui, L. N.; Dong, H. Z.; He, W. B.; Dong, L. F.; Yu, L. Y. High-performance supercapacitor of graphene quantum dots with uniform sizes. ACS Appl. Mater. Interfaces 2018, 10, 12983-12991.
Boruah, B. D.; Maji, A.; Misra, A. Flexible array of microsupercapacitor for additive energy storage performance over a large area. ACS Appl. Mater. Interfaces 2018, 10, 15864-15872.
Strauss, V.; Marsh, K.; Kowal, M. D.; El-Kady, M.; Kaner, R. B. A simple route to porous graphene from carbon nanodots for supercapacitor applications. Adv. Mater. 2018, 30, 1704449.
Liu, K. K.; Jiang, Q. S.; Kacica, C.; Derami, H. G.; Biswas, P.; Singamaneni, S. Flexible solid-state supercapacitor based on tin oxide/reduced graphene oxide/bacterial nanocellulose. RSC Adv. 2018, 8, 31296-31302.
Wang, Z. Y.; Zhang, H.; Li, N.; Shi, Z. J.; Gu, Z. N.; Cao, G. P. Laterally confined graphene nanosheets and graphene/SnO2 composites as high-rate anode materials for lithium-ion batteries. Nano Res. 2010, 3, 748-756.
Li, L.; Gao, C. T.; Kovalchuk, A.; Peng, Z. W.; Ruan, G. D.; Yang, Y.; Fei, H. L.; Zhong, Q. F.; Li, Y. L.; Tour, J. M. Sandwich structured graphene-wrapped FeS-graphene nanoribbons with improved cycling stability for lithium ion batteries. Nano Res. 2016, 9, 2904-2911.
Benítez, A.; Caballero, A.; Morales, J.; Hassoun, J.; Rodríguez-Castellón, E.; Canales-Vázquez, J. Physical activation of graphene: An effective, simple and clean procedure for obtaining microporous graphene for high-performance Li/S batteries. Nano Res. 2019, 12, 759-766.
Wang, A. X.; Tang, S.; Kong, D. B.; Liu, S.; Chiou, K.; Zhi, L. J.; Huang, J. X.; Xia, Y. Y.; Luo, J. Y. Bending-tolerant anodes for lithium-metal batteries. Adv. Mater. 2018, 30, 1703891.
Shi, H. D.; Zhao, X. J.; Wu, Z. S.; Dong, Y. F.; Lu, P. F.; Chen, J.; Ren, W. C.; Cheng, H. M.; Bao, X. H. Free-standing integrated cathode derived from 3D graphene/carbon nanotube aerogels serving as binder-free sulfur host and interlayer for ultrahigh volumetric-energy-density lithiumsulfur batteries. Nano Energy 2019, 60, 743-751.
Hu, Y. X.; Luo, B.; Ye, D. L.; Zhu, X. B.; Lyu, M.; Wang, L. Z. An innovative freeze-dried reduced graphene oxide supported SnS2 cathode active material for aluminum-ion batteries. Adv. Mater. 2017, 29, 1606132.
Yuan, T. C.; Wang, Y. X.; Zhang, J. X.; Pu, X. J.; Ai, X. P.; Chen, Z. X.; Yang, H. X.; Cao, Y. L. 3D Graphene decorated Na4Fe3(PO4)2(P2O7) microspheres as low-cost and high-performance cathode materials for sodium-ion batteries. Nano Energy 2019, 56, 160-168.
Huang, Y. X.; Wang, Z. H.; Jiang, Y.; Li, S. J.; Li, Z. H.; Zhang, H. Q.; Wu, F.; Xie, M.; Li, L.; Chen, R. J. Hierarchical porous Co0.85Se@reduced graphene oxide ultrathin nanosheets with vacancy-enhanced kinetics as superior anodes for sodium-ion batteries. Nano Energy 2018, 53, 524-535.
Pan, J.; Chen, S. L.; Fu, Q.; Sun, Y. W.; Zhang, Y. C.; Lin, N.; Gao, P.; Yang, J.; Qian, Y. T. Layered-structure SbPO4/reduced graphene oxide: An advanced anode material for sodium ion batteries. ACS Nano 2018, 12, 12869-12878.
Wang, H. W.; Wu, M. S.; Lei, X. L.; Tian, Z. F.; Xu, B.; Huang, K.; Ouyang, C. Y. Siligraphene as a promising anode material for lithium-ion batteries predicted from first-principles calculations. Nano Energy 2018, 49, 67-76.
Longoni, G.; Panda, J. K.; Gagliani, L.; Brescia, R.; Manna, L.; Bonaccorso, F.; Pellegrini, V. In situ LiFePO4 nano-particles grown on few-layer graphene flakes as high-power cathode nanohybrids for lithium-ion batteries. Nano Energy 2018, 51, 656-667.
Han, J. H.; Hirata, A.; Du, J.; Ito, Y.; Fujita, T.; Kohara, S.; Ina, T.; Chen, M. Intercalation pseudocapacitance of amorphous titanium dioxide@nanoporous graphene for high-rate and large-capacity energy storage. Nano Energy 2018, 49, 354-362.
Li, J. L.; Qin, W.; Xie, J. P.; Lei, H.; Zhu, Y. Q.; Huang, W. Y.; Xu, X.; Zhao, Z. J.; Mai, W. J. Sulphur-doped reduced graphene oxide sponges as high-performance free-standing anodes for K-ion storage. Nano Energy 2018, 53, 415-424.
Li, Q. C.; Song, Y. Z.; Xu, R. Z.; Zhang, L.; Gao, J.; Xia, Z.; Tian, Z. N.; Wei, N.; Rümmeli, M. H.; Zou, X. L. et al. Biotemplating growth of nepenthes-like N-doped graphene as a bifunctional polysulfide scavenger for Li-S batteries. ACS Nano 2018, 12, 10240-10250.
Kong, L.; Li, B. Q.; Peng, H. J.; Zhang, R.; Xie, J.; Huang, J. Q.; Zhang, Q. Porphyrin-derived graphene-based nanosheets enabling strong polysulfide chemisorption and rapid kinetics in lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1800849.
Zhou, L. J.; Zhang, C. Y.; Cai, X. Y.; Qian, Y.; Jiang, H. F.; Li, B. S.; Lai, L. F.; Shen, Z. X.; Huang, W. N, P co-doped hierarchical porous graphene as a metal-free bifunctional air cathode for Zn-air batteries. ChemElectroChem 2018, 5, 1811-1816.
Khan, A. F.; Down, M. P.; Smith, G. C.; Foster, C. W.; Banks, C. E. Surfactant-exfoliated 2D hexagonal boron nitride (2D-hBN): Role of surfactant upon the electrochemical reduction of oxygen and capacitance applications. J. Mater. Chem. A 2017, 5, 4103-4113.
Saha, S.; Jana, M.; Khanra, P.; Samanta, P.; Koo, H.; Murmu, N. C.; Kuila, T. Band gap engineering of boron nitride by graphene and its application as positive electrode material in asymmetric supercapacitor device. ACS Appl. Mater. Interfaces 2015, 7, 14211-14222.
Saha, S.; Jana, M.; Samanta, P.; Murmu, N. C.; Kim, N. H.; Kuila, T.; Lee, J. H. Investigation of band structure and electrochemical properties of h-BN/rGO composites for asymmetric supercapacitor applications. Mater. Chem. Phys. 2017, 190, 153-165.
Byun, S.; Kim, J. H.; Song, S. H.; Lee, M.; Park, J. J.; Lee, G.; Hong, S. H.; Lee, D. Ordered, scalable heterostructure comprising boron nitride and graphene for high-performance flexible supercapacitors. Chem. Mater. 2016, 28, 7750-7756.
Gilshteyn, E. P.; Amanbayev, D.; Anisimov, A. S.; Kallio, T.; Nasibulin, A. G. All-nanotube stretchable supercapacitor with low equivalent series resistance. Sci. Rep. 2017, 7, 17449.
Zheng, S. H.; Lei, W. W.; Qin, J. Q.; Wu, Z. -S.; Zhou, F.; Wang, S.; Shi, X. Y.; Sun, C. L.; Chen, Y.; Bao, X. H. All-solid-state high-energy planar asymmetric supercapacitors based on all-in-one monolithic film using boron nitride nanosheets as separator. Energy Storage Mater. 2018, 10, 24-31.
Xie, J.; Liao, L.; Gong, Y. J.; Li, Y. B.; Shi, F. F.; Pei, A.; Sun, J.; Zhang, R. F.; Kong, B.; Subbaraman, R. et al. Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode. Sci. Adv. 2017, 3, eaao3170.
Li, H. L.; Tay, R. Y.; Tsang, S. H.; Liu, W. W.; Teo, E. H. T. Reduced graphene oxide/boron nitride composite film as a novel binder-free anode for lithium ion batteries with enhanced performances. Electrochim. Acta 2015, 166, 197-205.
Monajjemi, M. Graphene/(h-BN)n/X-doped graphene as anode material in lithium ion batteries (X = Li, Be, B and N). Maced. J. Chem. Chem. Eng. 2017, 36, 101-118.
Kim, P. J. H.; Seo, J.; Fu, K.; Choi, J.; Liu, Z. M.; Kwon, J.; Hu, L. B.; Paik, U. Synergistic protective effect of a BN-carbon separator for highly stable lithium sulfur batteries. NPG Asia Mater. 2017, 9, e375.
Luo, W.; Zhou, L. H.; Fu, K.; Yang, Z.; Wan, J. Y.; Manno, M.; Yao, Y. G.; Zhu, H. L.; Yang, B.; Hu, L. B. A thermally conductive separator for stable li metal anodes. Nano Lett. 2015, 15, 6149-6154.
Aydın, H.; Çelik, S. Ü.; Bozkurt, A. Electrolyte loaded hexagonal boron nitride/polyacrylonitrile nanofibers for lithium ion battery application. Solid State Ionics 2017, 309, 71-76.
Rodrigues, M. T. F.; Kalaga, K.; Gullapalli, H.; Babu, G.; Reddy, A. L. M.; Ajayan, P. M. Hexagonal boron nitride-based electrolyte composite for Li-ion battery operation from room temperature to 150 ℃. Adv. Energy Mater. 2016, 6, 1600218.
Pazhamalai, P.; Krishnamoorthy, K.; Manoharan, S.; Kim, S. J. High energy symmetric supercapacitor based on mechanically delaminated few-layered MoS2 sheets in organic electrolyte. J. Alloys Compd. 2019, 771, 803-809.
Islam, N.; Wang, S.; Warzywoda, J.; Fan, Z. Y. Fast supercapacitors based on vertically oriented MoS2 nanosheets on plasma pyrolyzed cellulose filter paper. J. Power Sources 2018, 400, 277-283.
Neetika; Sanger, A.; Malik, V. K.; Chandra, R. One step sputtered grown MoS2 nanoworms binder free electrodes for high performance supercapacitor application. Int. J. Hydrogen Energy 2018, 43, 11141-11149.
Joseph, N.; Muhammed Shafi, P.; Chandra Bose, A. Metallic 1T-MoS2 with defect induced additional active edges for high performance supercapacitor application. New J. Chem. 2018, 42, 12082-12090.
Nandi, D. K.; Sahoo, S.; Sinha, S.; Yeo, S.; Kim, H.; Bulakhe, R. N.; Heo, J.; Shim, J. J.; Kim, S. H. Highly uniform atomic layer-deposited MoS2@3D-Ni-foam: A novel approach to prepare an electrode for supercapacitors. ACS Appl. Mater. Interfaces 2017, 9, 40252-40264.
Saraf, M.; Natarajan, K.; Mobin, S. M. Emerging robust heterostructure of MoS2-rGO for high-performance supercapacitors. ACS Appl. Mater. Interfaces 2018, 10, 16588-16595.
Zardkhoshoui, A. M.; Davarani, S. S. H. Flexible asymmetric supercapacitors based on CuO@MnO2-rGO and MoS2-rGO with ultrahigh energy density. J. Electroanal. Chem. 2018, 827, 221-229.
Liu, M. C.; Xu, Y.; Hu, Y. X.; Yang, Q. Q.; Kong, L. B.; Liu, W. W.; Niu, W. J.; Chueh, Y. L. Electrostatically charged MoS2/graphene oxide hybrid composites for excellent electrochemical energy storage devices. ACS Appl. Mater. Interfaces 2018, 10, 35571-35579.
Kamila, S.; Mohanty, B.; Samantara, A. K.; Guha, P.; Ghosh, A.; Jena, B.; Satyam, P. V.; Mishra, B. K.; Jena, B. K. Highly active 2D layered MoS2-rGO hybrids for energy conversion and storage applications. Sci. Rep. 2017, 7, 8378.
Sha, R.; Badhulika, S. Few layered MoS2 grown on pencil graphite: A unique single-step approach to fabricate economical, binder-free electrode for supercapacitor applications. Nanotechnology 2019, 30, 035402.
Pedico, A.; Lamberti, A.; Gigot, A.; Fontana, M.; Bella, F.; Rivolo, P.; Cocuzza, M.; Pirri, C. F. High-performing and stable wearable supercapacitor exploiting rGO aerogel decorated with copper and molybdenum sulfides on carbon fibers. ACS Appl. Energy Mater. 2018, 1, 4440-4447.
Xie, B. Q.; Chen, Y.; Yu, M. Y.; Sun, T.; Lu, L. H.; Xie, T.; Zhang, Y.; Wu, Y. C. Hydrothermal synthesis of layered molybdenum sulfide/N-doped graphene hybrid with enhanced supercapacitor performance. Carbon 2016, 99, 35-42.
Zhu, J. X.; Sun, W. P.; Yang, D.; Zhang, Y.; Hoon, H. H.; Zhang, H.; Yan, Q. Y. Multifunctional architectures constructing of PANI nanoneedle arrays on MoS2 thin nanosheets for high-energy supercapacitors. Small 2015, 11, 4123-4129.
Yang, C.; Chen, Z. X.; Shakir, I.; Xu, Y. X.; Lu, H. B. Rational synthesis of carbon shell coated polyaniline/MoS2 monolayer composites for high-performance supercapacitors. Nano Res. 2016, 9, 951-962.
Tang, H. J.; Wang, J. Y.; Yin, H. J.; Zhao, H. J.; Wang, D.; Tang, Z. Y. Growth of polypyrrole ultrathin films on MoS2 monolayers as high-performance supercapacitor electrodes. Adv. Mater. 2015, 27, 1117-1123.
Chao, J.; Yang, L. C.; Liu, J. W.; Hu, R. Z.; Zhu, M. Sandwiched MoS2/polyaniline nanosheets array vertically aligned on reduced graphene oxide for high performance supercapacitors. Electrochim. Acta 2018, 270, 387-394.
Li, X.; Zhang, C. F.; Xin, S.; Yang, Z. C.; Li, Y. T.; Zhang, D. W.; Yao, P. Facile synthesis of MoS2/reduced graphene oxide@polyaniline for high-performance supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 21373-21380.
Huang, K. J.; Wang, L.; Liu, Y. J.; Wang, H. B.; Liu, Y. M.; Wang, L. L. Synthesis of polyaniline/2-dimensional graphene analog MoS2 composites for high-performance supercapacitor. Electrochim. Acta 2013, 109, 587-594.
Palsaniya, S.; Nemade, H. B.; Dasmahapatra, A. K. Synthesis of polyaniline/graphene/MoS2 nanocomposite for high performance supercapacitor electrode. Polymer 2018, 150, 150-158.
Lin, T. W.; Sadhasivam, T.; Wang, A. Y.; Chen, T. Y.; Lin, J. Y.; Shao, L. D. Ternary composite nanosheets with MoS2/WS2/graphene heterostructures as high-performance cathode materials for supercapacitors. ChemElectroChem 2018, 5, 1024-1031.
Zhao, C. Y.; Ang, J. M.; Liu, Z. L.; Lu, X. H. Alternately stacked metallic 1T-MoS2/polyaniline heterostructure for high-performance supercapacitors. Chem. Eng. J. 2017, 330, 462-469.
Lei, X.; Yu, K.; Qi, R. J.; Zhu, Z. Q. Fabrication and theoretical investigation of MoS2-Co3S4 hybrid hollow structure as electrode material for lithium-ion batteries and supercapacitors. Chem. Eng. J. 2018, 347, 607-617.
Yan, Z. S.; Long, J. Y.; Zhou, Q. F.; Gong, Y.; Lin, J. H. One-step synthesis of MnS/MoS2/C through the calcination and sulfurization of a bi-metal-organic framework for a high-performance supercapacitor and its photocurrent investigation. Dalton Trans. 2018, 47, 5390-5405.
Kandula, S.; Shrestha, K. R.; Kim, N. H.; Lee, J. H. Fabrication of a 3D hierarchical sandwich Co9S8/α-MnS@N-C@MoS2 nanowire architectures as advanced electrode material for high performance hybrid supercapacitors. Small 2018, 14, 1800291.
Hou, X. C.; Zhang, Y. Z.; Dong, Q. C.; Hong, Y.; Liu, Y. L.; Wang, W. J.; Shao, J. J.; Si, W. L.; Dong, X. C. Metal organic framework derived core-shell structured Co9S8@N-C@MoS2 nanocubes for supercapacitor. ACS Appl. Energy Mater. 2018, 1, 3513-3520.
Thakur, A. K.; Majumder, M.; Choudhary, R. B.; Singh, S. B. MoS2 flakes integrated with boron and nitrogen-doped carbon: Striking gravimetric and volumetric capacitive performance for supercapacitor applications. J. Power Sources 2018, 402, 163-173.
Tian, J. Y.; Zhang, H. Y.; Li, Z. H. Synthesis of double-layer nitrogen-doped microporous hollow carbon@MoS2/MoO2 nanospheres for supercapacitors. ACS Appl. Mater. Interfaces 2018, 10, 29511-29520.
Jing, L. Y.; Lian, G.; Wang, J. R.; Zhao, M. W.; Liu, X. Z.; Wang, Q. L.; Cui, D. L.; Wong, C. P. Porous-hollow nanorods constructed from alternate intercalation of carbon and MoS2 monolayers for lithium and sodium storage. Nano Res., in press, DOI: 10.1007/s12274-019-2458-9.
Bozheyev, F.; Zhexembekova, A.; Zhumagali, S.; Molkenova, A.; Bakenov, Z. MoS2 nanopowder as anode material for lithium-ion batteries produced by self-propagating high-temperature synthesis. Mater. Today Proc. 2017, 4, 4567-4571.
Liu, Y. Y.; Zhang, L.; Wang, H. Q.; Yu, C.; Yan, X. L.; Liu, Q. N.; Xu, B.; Wang, L. M. Synthesis of severe lattice distorted MoS2 coupled with hetero-bonds as anode for superior lithium-ion batteries. Electrochim. Acta 2018, 262, 162-172.
Wang, R. X.; Gao, S.; Wang, K. L.; Zhou, M.; Cheng, S. J.; Jiang, K. MoS2@rGO nanoflakes as high performance anode materials in sodium ion batteries. Sci. Rep. 2017, 7, 7963.
David, L.; Bhandavat, R.; Singh, G. MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 2014, 8, 1759-1770.
Guo, P. Q.; Liu, D. Q.; Liu, Z. J.; Shang, X. N.; Liu, Q. M.; He, D. Y. Dual functional MoS2/graphene interlayer as an efficient polysulfide barrier for advanced lithium-sulfur batteries. Electrochim. Acta 2017, 256, 28-36.
Stolyarova, S. G.; Kanygin, M. A.; Koroteev, V. O.; Shubin, Y. V.; Smirnov, D. A.; Okotrub, A. V.; Bulusheva, L. G. High-pressure high-temperature synthesis of MoS2/holey graphene hybrids and their performance in Li-ion batteries. Phys. Status Solidi B 2018, 255, 1700262.
Dong, Y. F.; Lu, P. F.; Shi, H. D.; Qin, J. Q.; Chen, J.; Ren, W. C.; Cheng, H. M.; Wu, Z. S. 2D Hierarchical yolk-shell heterostructures as advanced host-interlayer integrated electrode for enhanced Li-S batteries. J. Energy Chem. 2019, 36, 64-73.
Li, Z. T.; Deng, S. Z.; Xu, R. F.; Wei, L. Q.; Su, X.; Wu, M. B. Combination of nitrogen-doped graphene with MoS2 nanoclusters for improved Li-S battery cathode: Synthetic effect between 2D components. Electrochim. Acta 2017, 252, 200-207.
Wang, J. G.; Zhou, R.; Jin, D. D.; Xie, K. Y.; Wei, B. Q. Uniform growth of MoS2 nanosheets on carbon nanofibers with enhanced electrochemical utilization for Li-ion batteries. Electrochim. Acta 2017, 231, 396-402.
Shan, X. Y.; Zhang, N.; Zheng, R. D.; Gao, H.; Zhang, X. T. One-pot synthesis of SL-MoS2/C/Ti3C2Tx@C hierarchical superstructures for ultralong cycle-life Li-ion batteries. Electrochim. Acta 2019, 295, 286-293.
Badam, R.; Joshi, P.; Vedarajan, R.; Natarajan, R.; Matsumi, N. Few-layered MoS2/acetylene black composite as an efficient anode material for lithium-ion batteries. Nanoscale Res. Lett. 2017, 12, 555.
Jing, L. Y.; Lian, G.; Niu, F. E.; Yang, J.; Wang, Q. L.; Cui, D. L.; Wong, C. P.; Liu, X. Z. Few-atomic-layered hollow nanospheres constructed from alternate intercalation of carbon and MoS2 monolayers for sodium and lithium storage. Nano Energy 2018, 51, 546-555.
Balasingam, S. K.; Lee, J. S.; Jun, Y. Few-layered MoSe2 nanosheets as an advanced electrode material for supercapacitors. Dalton Trans. 2015, 44, 15491-15498.
Gao, Y. P.; Huang, K. J.; Shuai, H. L.; Liu, L. Synthesis of sphere-feature molybdenum selenide with enhanced electrochemical performance for supercapacitor. Mater. Lett. 2017, 209, 319-322.
Guo, K. L.; Yang, F. F.; Cui, S. Z.; Chen, W. H.; Mi, L. W. Controlled synthesis of 3D hierarchical NiSe microspheres for high-performance supercapacitor design. RSC Adv. 2016, 6, 46523-46530.
Jiang, S.; Wu, J. H.; Ye, B. R.; Fan, Y. Y.; Ge, J. H.; Guo, Q. Y.; Huang, M. L. Growth of Ni3Se2 nanosheets on Ni foam for asymmetric supercapacitors. J. Mater. Sci. Mater. Electron. 2018, 29, 4649-4657.
Shang, X.; Chi, J. Q.; Lu, S. S.; Gou, J. X.; Dong, B.; Li, X.; Liu, Y. R.; Yan, K. L.; Chai, Y. M.; Liu, C. G. Carbon fiber cloth supported interwoven WS2 nanosplates with highly enhanced performances for supercapacitors. Appl. Surf. Sci. 2017, 392, 708-714.
Kirubasankar, B.; Vijayan, S.; Angaiah, S. Sonochemical synthesis of a 2D-2D MoSe2/graphene nanohybrid electrode material for asymmetric supercapacitors. Sustain. Energy Fuels 2019, 3, 467-477.
Wang, C. L.; Wu, X.; Xu, H. J.; Zhu, Y. J.; Liang, F.; Luo, C.; Xia, Y.; Xie, X. Y.; Zhang, J.; Duan, C. G. VSe2/carbon-nanotube compound for all solid-state flexible in-plane supercapacitor. Appl. Phys. Lett. 2019, 114, 023902.
Wang, M.; Zhang, L.; Zhong, Y. J.; Huang, M. R.; Zhen, Z.; Zhu, H. W. In situ electrodeposition of polypyrrole onto TaSe2 nanobelts quasi-arrays for high-capacitance supercapacitor. Nanoscale 2018, 10, 17341-17346.
Li, L.; Li, Z. D.; Yoshimura, A.; Sun, C. L.; Wang, T. M.; Chen, Y. W.; Chen, Z. Z.; Littlejohn, A.; Xiang, Y.; Hundekar, P. et al. Vanadium disulfide flakes with nanolayered titanium disulfide coating as cathode materials in lithium-ion batteries. Nat. Commun. 2019, 10, 1764.
Bellani, S.; Wang, F. X.; Longoni, G.; Najafi, L.; Oropesa-Nuñez, R.; Del Rio Castillo, A. E.; Prato, M.; Zhuang, X. D.; Pellegrini, V.; Feng, X. L. et al. WS2-graphite dual-ion batteries. Nano Lett. 2018, 18, 7155-7164.