AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

N-doped carbon shell encapsulated PtZn intermetallic nanoparticles as highly efficient catalysts for fuel cells

Yakun Xue1Huiqi Li1Xieweiyi Ye1Shuangli Yang1Zhiping Zheng1Xiao Han1Xibo Zhang1Luning Chen1Zhaoxiong Xie1,2Qin Kuang1( )Lansun Zheng1
State Key Laboratory of Physical Chemistry of Solid Surfaces&Department of Chemistry,College of Chemistry and Chemical Engineering, Xiamen University,Xiamen,361005,China;
Pen-Tung Sah Institute of Micro-Nano Science and Technology,Xiamen University,Xiamen,361005,China;
Show Author Information

Graphical Abstract

Abstract

The high cost and poor durability of Pt nanoparticles (NPs) have always been great challenges to the commercialization of proton exchange membrane fuel cells (PEMFCs). Pt-based intermetallic NPs with a highly ordered structure are considered as promising catalysts for PEMFCs due to their high catalytic activity and stability. Here, we reported a facile method to synthesize N-doped carbon encapsulated PtZn intermetallic (PtZn@NC) NPs via the pyrolysis of Pt@Zn-based zeolitic imidazolate framework-8 (Pt@ZIF-8) composites. The catalyst obtained at 800 ℃ (10%-PtZn@NC-800) was found to exhibit a half-wave potential (E1/2) up to 0.912 V versus reversible hydrogen electrode (RHE) for the cathodic oxygen reduction reaction in an acidic medium, which shifted by 26 mV positively compared to the benchmark Pt/C catalyst. Besides, the mass activity and specific activity of 10%-PtZn@NC-800 at 0.9 V versus RHE were nearly 3 and 5 times as great as that of commercial Pt/C, respectively. It is worth noting that the PtZn@NC showed excellent stability in oxygen reduction reaction (ORR) with just 1 mV of the E1/2 loss after 5, 000 cycles, which is superior to that of most reported PtM catalysts (especially those disordered solid solutions). Furthermore, such N-doped carbon shell encapsulated PtZn intermetallic NPs showed significantly enhanced performances towards the anodic oxidation reaction of organic small molecules (such as methanol and formic acid). The synergistic effects of the N doped carbon encapsulation structure and intermetallic NPs are responsible for outstanding performances of the catalysts. This work provides us a new engineering strategy to acquire highly active and stable multifunctional catalysts for PEMFCs.

Electronic Supplementary Material

Download File(s)
12274_2019_2473_MOESM1_ESM.pdf (3.3 MB)

References

1

Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B: Environ. 2005, 56, 9–35.

2

Yu, X. W.; Ye, S. Y. Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part I. Physico-chemical and electronic interaction between Pt and carbon support, and activity enhancement of Pt/C catalyst. J. Power Sources 2007, 172, 133–144.

3

Sopian, K.; Wan Daud, W. R. Challenges and future developments in proton exchange membrane fuel cells. Renew. Energy 2006, 31, 719–727.

4

Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414–1419.

5

Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Marković, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497.

6

Sasaki, K.; Naohara, H.; Choi, Y.; Cai, Y.; Chen, W. F.; Liu, P.; Adzic, R. R. Highly stable Pt monolayer on PdAu nanoparticle electrocatalysts for the oxygen reduction reaction. Nat. Commun. 2012, 3, 1115.

7

Qi, Z. Y.; Xiao, C. X.; Liu, C.; Goh, T. W.; Zhou, L.; Maligal-Ganesh, R.; Pei, Y. C.; Li, X. L.; Curtiss, L. A.; Huang, W. Y. Sub-4 nm PtZn intermetallic nanoparticles for enhanced mass and specific activities in catalytic electrooxidation reaction. J. Am. Chem. Soc. 2017, 139, 4762–4768.

8

Zhu, J.; Zheng, X.; Wang, J.; Wu, Z. X.; Han, L. L.; Lin, R. Q.; Xin, H. L.; Wang, D. L. Structurally ordered Pt–Zn/C series nanoparticles as efficient anode catalysts for formic acid electrooxidation. J. Mater. Chem. A 2015, 3, 22129–22135.

9

Porter, N. S.; Wu, H.; Quan, Z. W.; Fang, J. Y. Shape-control and electrocatalytic activity-enhancement of Pt-based bimetallic nanocrystals. Acc. Chem. Res. 2013, 46, 1867–1877.

10

Wang, Y. J.; Zhao, N. N.; Fang, B. Z.; Li, H.; Bi, X. T.; Wang, H. J. Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: Particle size, shape, and composition manipulation and their impact to activity. Chem. Rev. 2015, 115, 3433–3467.

11

Chen, Q. L.; Cao, Z. M.; Du, G. F.; Kuang, Q.; Huang, J.; Xie, Z. X.; Zheng, L. S. Excavated octahedral Pt-Co alloy nanocrystals built with ultrathin nanosheets as superior multifunctional electrocatalysts for energy conversion applications. Nano Energy 2017, 39, 582–589.

12

Huang, Y.; Garcia, M.; Habib, S.; Shui, J. L.; Wagner, F. T.; Zhang, J. L.; Jorné, J.; Li, J. C. M. Dealloyed PtCo hollow nanowires with ultrathin wall thicknesses and their catalytic durability for the oxygen reduction reaction. J. Mater. Chem. A 2014, 2, 16175–16180.

13

Zhu, Z. J.; Zhai, Y. L.; Dong, S. J. Facial synthesis of PtM (M = Fe, Co, Cu, Ni) bimetallic alloy nanosponges and their enhanced catalysis for oxygen reduction reaction. ACS Appl. Mater. Interfaces 2014, 6, 16721–16726.

14

Chen, Q. L.; Zhang, J. W.; Jia, Y. Y.; Jiang, Z. Y.; Xie, Z. X.; Zheng, L. S. Wet chemical synthesis of intermetallic Pt3Zn nanocrystals via weak reduction reaction together with upd process and their excellent electrocatalytic performances. Nanoscale 2014, 6, 7019–7024.

15

Gan, L.; Rudi, S.; Cui, C. H.; Heggen, M.; Strasser, P. Size-controlled synthesis of sub-10 nm PtNi3 alloy nanoparticles and their unusual volcano-shaped size effect on orr electrocatalysis. Small 2016, 12, 3189–3196.

16

Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.

17

Bu, L. Z.; Zhang, N.; Guo, S. J.; Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410–1414.

18

Taniguchi, A.; Akita, T.; Yasuda, K.; Miyazaki, Y. Analysis of electrocatalyst degradation in PEMFC caused by cell reversal during fuel starvation. J. Power Sources 2004, 130, 42–49.

19

Iihama, S.; Furukawa, S.; Komatsu, T. Efficient catalytic system for chemoselective hydrogenation of halonitrobenzene to haloaniline using PtZn intermetallic compound. ACS Catal. 2016, 6, 742–746.

20

Wang, W.; Lei, B.; Guo, S. J. Engineering multimetallic nanocrystals for highly efficient oxygen reduction catalysts. Adv. Energy Mater. 2016, 6, 1600236.

21

Ji, X. L.; Lee, K. T.; Holden, R.; Zhang, L.; Zhang, J. J.; Botton, G. A.; Couillard, M.; Nazar, L. F. Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes. Nat. Chem. 2010, 2, 286–293.

22

Wang, J.; Wu, H. H.; Gao, D. F.; Miao, S.; Wang, G. X.; Bao, X. H. High-density iron nanoparticles encapsulated within nitrogen-doped carbon nanoshell as efficient oxygen electrocatalyst for zinc–air battery. Nano Energy 2015, 13, 387–396.

23

Deng, J.; Ren, P. J.; Deng, D. H.; Yu, L.; Yang, F.; Bao, X. H. Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction. Energy Environ. Sci. 2014, 7, 1919–1923.

24

Chen, X. Q.; Yu, L.; Wang, S. H.; Deng, D. H.; Bao, X. H. Highly active and stable single iron site confined in graphene nanosheets for oxygen reduction reaction. Nano Energy 2017, 32, 353–358.

25

Li, H. B.; Xiao, J. P.; Fu, Q.; Bao, X. H. Confined catalysis under two-dimensional materials. Proc. Natl. Acad. Sci. USA 2017, 114, 5930–5934.

26

Deng, J.; Deng, D. H.; Bao, X. H. Robust catalysis on 2D materials encapsulating metals: Concept, application, and perspective. Adv. Mater. 2017, 29, 1606967.

27

Cui, T. T.; Dong, J. H.; Pan, X. L.; Yu, T.; Fu, Q.; Bao, X. H. Enhanced hydrogen evolution reaction over molybdenum carbide nanoparticles confined inside single-walled carbon nanotubes. J. Energy Chem. 2019, 28, 123–127.

28

Xiao, M. L.; Zhu, J. B.; Feng, L. G.; Liu, C. P.; Xing, W. Meso/macroporous nitrogen-doped carbon architectures with iron carbide encapsulated in graphitic layers as an efficient and robust catalyst for the oxygen reduction reaction in both acidic and alkaline solutions. Adv. Mater. 2015, 27, 2521–2527.

29

Cui, X. J.; Ren, P. J.; Deng, D. H.; Deng, J.; Bao, X. H. Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy Environ. Sci. 2016, 9, 123–129.

30

Deng, J.; Ren, P. J.; Deng, D. H.; Bao, X. H. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2015, 54, 2100–2104.

31

Zhao, Z. H.; Li, M. T.; Zhang, L. P.; Dai, L. M.; Xia, Z. H. Design principles for heteroatom-doped carbon nanomaterials as highly efficient catalysts for fuel cells and metal-air batteries. Adv. Mater. 2015, 27, 6834–6840.

32

Du, N. N.; Wang, C. M.; Long, R.; Xiong, Y. J. N-doped carbon-stabilized PtCo nanoparticles derived from Pt@ZIF-67: Highly active and durable catalysts for oxygen reduction reaction. Nano Res. 2017, 10, 3228–3237.

33

Wang, X. X.; Hwang, S.; Pan, Y. T.; Chen, K.; He, Y. H.; Karakalos, S.; Zhang, H. G.; Spendelow, J. S.; Su, D.; Wu, G. Ordered Pt3Co intermetallic nanoparticles derived from metal-organic frameworks for oxygen reduction. Nano Lett. 2018, 18, 4163–4171.

34

Chen, Y. Z.; Wang, C. M.; Wu, Z. Y.; Xiong, Y. J.; Xu, Q.; Yu, S. H.; Jiang, H. L. From bimetallic metal-organic framework to porous carbon: High surface area and multicomponent active dopants for excellent electrocatalysis. Adv. Mater. 2015, 27, 5010–5016.

35

Li, F. L.; Shao, Q.; Huang, X. Q.; Lang, J. P. Nanoscale trimetallic metalorganic frameworks enable efficient oxygen evolution electrocatalysis. Angew. Chem., Int. Ed. 2018, 57, 1888–1892.

36

Shao, Q.; Yang, J.; Huang, X. Q. The design of water oxidation electrocatalysts from nanoscale metal-organic frameworks. Chem. —Eur. J. 2018, 24, 15143–15155.

37

Zhang, N.; Shao, Q.; Wang, P. T.; Zhu, X.; Huang, X. Q. Porous Pt-Ni nanowires within in situ generated metal-organic frameworks for highly chemoselective cinnamaldehyde hydrogenation. Small 2018, 14, e1704318.

38

Lu, G.; Li, S. Z.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X. Y.; Wang, Y.; Wang, X.; Han, S. Y.; Liu, X. G. et al. Imparting functionality to a metalorganic framework material by controlled nanoparticle encapsulation. Nat. Chem. 2012, 4, 310–316.

39

Qi, Z. Y.; Pei, Y. C.; Goh, T. W.; Wang, Z. Y.; Li, X. L.; Lowe, M.; Maligal-Ganesh, R. V.; Huang, W. Y. Conversion of confined metal@ZIF-8 structures to intermetallic nanoparticles supported on nitrogen-doped carbon for electrocatalysis. Nano Res. 2018, 11, 3469–3479.

40

Deng, J.; Yu, L.; Deng, D. H.; Chen, X. Q.; Yang, F.; Bao, X. H. Highly active reduction of oxygen on a FeCo alloy catalyst encapsulated in pod-like carbon nanotubes with fewer walls. J. Mater. Chem. A 2013, 1, 14868–14873.

41

Guinea, F. Charge distribution and screening in layered graphene systems. Phys. Rev. B 2007, 75, 235433.

42

Chen, H. A.; Hsin, C. L.; Huang, Y. T.; Tang, M. L.; Dhuey, S.; Cabrini, S.; Wu, W. W.; Leone, S. R. Measurement of interlayer screening length of layered graphene by plasmonic nanostructure resonances. J. Phys. Chem. C 2013, 117, 22211–22217.

43

Deng, D. H.; Yu, L.; Chen, X. Q.; Wang, G. X.; Jin, L.; Pan, X. L.; Deng, J.; Sun, G. Q.; Bao, X. H. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 371–375.

44

Wu, G.; Mack, N. H.; Gao, W.; Ma, S. G.; Zhong, R. Q.; Han, J. T.; Baldwin, J. K.; Zelenay, P. Nitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous lithium-O2 battery cathodes. ACS Nano 2012, 6, 9764–9776.

45

Li, Q.; Xu, P.; Gao, W.; Ma, S. G.; Zhang, G. Q.; Cao, R. G.; Cho, J.; Wang, H. L.; Wu, G. Graphene/graphene-tube nanocomposites templated from cage-containing metal-organic frameworks for oxygen reduction in li-O2 batteries. Adv. Mater. 2014, 26, 1378–1386.

46

Zheng, F. C.; Yang, Y.; Chen, Q. W. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat. Commun. 2014, 5, 5261.

47

Zhu, Y. W.; Murali, S.; Cai, W. W.; Li, X. S.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906–3924.

48

Shi, P. C.; Yi, J. D.; Liu, T. T.; Li, L.; Zhang, L. J.; Sun, C. F.; Wang, Y. B.; Huang, Y. B.; Cao, R. Hierarchically porous nitrogen-doped carbon nanotubes derived from core–shell ZnO@zeolitic imidazolate framework nanorods for highly efficient oxygen reduction reactions. J. Mater. Chem. A 2017, 5, 12322–12329.

49

Sidik, R. A.; Anderson, A. B.; Subramanian, N. P.; Kumaraguru, S. P.; Popov, B. N. O2 reduction on graphite and nitrogen-doped graphite: Experiment and theory. J. Phys. Chem. B 2006, 110, 1787–1793.

50

Zhang, H. G.; Hwang, S.; Wang, M. Y.; Feng, Z. X.; Karakalos, S.; Luo, L. L.; Qiao, Z.; Xie, X. H.; Wang, C. M.; Su, D. et al. Single atomic iron catalysts for oxygen reduction in acidic media: Particle size control and thermal activation. J. Am. Chem. Soc. 2017, 139, 14143–14149.

51

Miura, A.; Wang, H. S.; Leonard, B. M.; Abruña, H. D.; DiSalvo, F. J. Synthesis of intermetallic PtZn nanoparticles by reaction of Pt nanoparticles with Zn vapor and their application as fuel cell catalysts. Chem. Mater. 2009, 21, 2661–2667.

Nano Research
Pages 2490-2497
Cite this article:
Xue Y, Li H, Ye X, et al. N-doped carbon shell encapsulated PtZn intermetallic nanoparticles as highly efficient catalysts for fuel cells. Nano Research, 2019, 12(10): 2490-2497. https://doi.org/10.1007/s12274-019-2473-x
Topics:

852

Views

63

Crossref

N/A

Web of Science

63

Scopus

4

CSCD

Altmetrics

Received: 10 June 2019
Revised: 05 July 2019
Accepted: 06 July 2019
Published: 19 July 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return