AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Anisotropic iron-doping patterns in two-dimensional cobalt oxide nanoislands on Au(111)

Anthony Curto1,§Zhaozong Sun2,§Jonathan Rodríguez-Fernández2Liang Zhang1Ayush Parikh1Ting Tan1Jeppe V. Lauritsen2Aleksandra Vojvodic1( )
Department of Chemical and Biomolecular EngineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
Interdisciplinary Nanoscience Center (iNANO)Aarhus University8000Aarhus CDenmark

§ Anthony Curto and Zhaozong Sun contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

An integrated approach combining density functional theory (DFT) calculations and atomic resolution scanning tunneling microscopy (STM) is used to study well-defined iron-doped cobalt oxide nanoislands supported on Au(111). The focus is on the structure and distribution of Fe dopants within these nanoislands of CoO as a function of Fe to Co ratio. The DFT and STM results agree strongly and complement each other to allow for a more complete understanding of the dopant structure trends on the nanoscale. Using Fe as a marker, we first find that the stacking sequence of the moiré structure of the host cobalt oxide nanoislands can be identified unambiguously through a combination of DFT and STM. Using the distinct contrast of the embedded Fe dopant atoms as observed with atom-resolved STM, we find correlations between Fe dopant position and the CoO/Au(111) moiré pattern at varying Fe dopant densities. Formation of Fe-dopant clusters within the nanoislands is investigated in detail through DFT and found to agree with the dopant patterns observed in STM. We find that the structural effects of Fe dopants throughout the nanoislands with the basal planes and the two types of edges—the oxygen and metal edges—have different nature. Both DFT calculations and STM images show a strong preference for Fe dopants to be located directly on or near the oxygen edge of the nanoislands as opposed to being directly on or near the metal edge. Taken together, our results illustrate that Fe dopant incorporation and distribution within CoO nanoislands are highly anisotropic and governed by both the moiré structure of the basal planes as well as nano-size effects present at the under-coordinated edges of different local geometry and chemistries.

Electronic Supplementary Material

Download File(s)
12274_2019_2474_MOESM1_ESM.pdf (5.5 MB)

References

1

Rao, C. N. R. Transition metal oxides. Annu. Rev. Phys. Chem. 1989, 40, 291-326.

2

Barcaro, G.; Fortunelli, A. 2D oxides on metal materials: Concepts, status, and perspectives. Phys. Chem. Chem. Phys. 2019, 21, 11510-11536.

3

Galatsis, K.; Li, Y. X.; Wlodarski, W.; Comini, E.; Sberveglieri, G.; Cantalini, C.; Santucci, S.; Passacantando, M. Comparison of single and binary oxide MoO3, TiO2 and WO3 sol-gel gas sensors. Sen. Actuators B: Chem. 2002, 83, 276-280.

4

Netzer, F. P. "Small and beautiful"-The novel structures and phases of nano-oxides. Surf. Sci. 2010, 604, 485-489.

5

Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 2011, 3, 1159-1165.

6

Tahir, M.; Pan, L.; Idrees, F.; Zhang, X. W.; Wang, L.; Zou, J. J.; Wang, Z. L. Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review. Nano Energy 2017, 37, 136-157.

7

Wang, J. H.; Cui, W.; Liu, Q.; Xing, Z. C.; Asiri, A. M.; Sun, X. P. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 2016, 28, 215-230.

8

Han, L.; Dong, S. J.; Wang, E. K. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv. Mater. 2016, 28, 9266-9291.

9

Morales-Guio, C. G.; Liardet, L.; Hu, X. L. Oxidatively electrodeposited thin-film transition metal (oxy)hydroxides as oxygen evolution catalysts. J. Am. Chem. Soc. 2016, 138, 8946-8957.

10

Hunter, B. M.; Gray, H. B.; Müller, A. M. Earth-abundant heterogeneous water oxidation catalysts. Chem. Rev. 2016, 116, 14120-14136.

11

Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333-337.

12

Barsan, N.; Koziej, D.; Weimar, U. Metal oxide-based gas sensor research: How to? Sens. Actuators B: Chem. 2007, 121, 18-35.

13

Burke, M. S.; Enman, L. J.; Batchellor, A. S.; Zou, S. H.; Boettcher, S. W. Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: Activity trends and design principles. Chem. Mater. 2015, 27, 7549-7558.

14

Zhuang, L. Z.; Ge, L.; Yang, Y. S.; Li, M. R.; Jia, Y.; Yao, X. D.; Zhu, Z. H. Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Adv. Mater. 2017, 29, 1606793.

15

Burke, M. S.; Kast, M. G.; Trotochaud, L.; Smith, A. M.; Boettcher, S. W. Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: The role of structure and composition on activity, stability, and mechanism. J. Am. Chem. Soc. 2015, 137, 3638-3648.

16

Yu, J.; Li, Q. Q.; Li, Y.; Xu, C. Y.; Zhen, L.; Dravid, V. P.; Wu, J. S. Ternary metal phosphide with triple-layered structure as a low-cost and efficient electrocatalyst for bifunctional water splitting. Adv. Funct. Mater. 2016, 26, 7644-7651.

17

Du, P. W.; Eisenberg, R. Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: Recent progress and future challenges. Energy Environ. Sci. 2012, 5, 6012-6021.

18

Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 2014, 136, 6744-6753.

19

Li, N.; Bediako, D. K.; Hadt, R. G.; Hayes, D.; Kempa, T. J.; von Cube, F.; Bell, D. C.; Chen, L. X.; Nocera, D. G. Influence of iron doping on tetravalent nickel content in catalytic oxygen evolving films. Proc. Natl. Acad. Sci. USA 2017, 114, 1486-1491.

20

Batchellor, A. S.; Boettcher, S. W. Pulse-electrodeposited Ni-Fe (oxy)hydroxide oxygen evolution electrocatalysts with high geometric and intrinsic activities at large mass loadings. ACS Catal. 2015, 5, 6680-6689.

21

Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477.

22

Deng, X. H.; Tüysüz, H. Cobalt-oxide-based materials as water oxidation catalyst: Recent progress and challenges. ACS Catal. 2014, 4, 3701-3714.

23

Smith, R. D. L.; Pasquini, C.; Loos, S.; Chernev, P.; Klingan, K.; Kubella, P.; Mohammadi, M. R.; Gonzalez-Flores, D.; Dau, H. Spectroscopic identification of active sites for the oxygen evolution reaction on iron-cobalt oxides. Nat. Commun. 2017, 8, 2022.

24

Yang, F. K.; Sliozberg, K.; Sinev, I.; Antoni, H.; Bähr, A.; Ollegott, K.; Xia, W.; Masa, J.; Grünert, W.; Cuenya, B. R. et al. Synergistic effect of cobalt and iron in layered double hydroxide catalysts for the oxygen evolution reaction. ChemSusChem 2017, 10, 156-165.

25

Heinz, K.; Müller, S.; Hammer, L. Crystallography of ultrathin iron, cobalt and nickel films grown epitaxially on copper. J. Phys. : Condens. Matter 1999, 11, 9437-9454.

26

Mountapmbeme Kouotou, P.; Vieker, H.; Tian, Z. Y.; Tchoua Ngamou, P. H.; El Kasmi, A.; Beyer, A.; Gölzhäuser, A.; Kohse-Höinghaus, K. Structure-activity relation of spinel-type Co-Fe oxides for low-temperature CO oxidation. Catal. Sci. Technol. 2014, 4, 3359-3367.

27

Haneda, M.; Kawaguchi, Y.; Towata, A. CoOx-FeOx composite oxide prepared by hydrothermal method as a highly active catalyst for low-temperature CO oxidation. J. Ceram. Soc. Jpn. 2017, 125, 135-140.

28

Enman, L. J.; Burke Stevens, M.; Dahan, M. H.; Nellist, M. R.; Caspary Toroker, M.; Boettcher, S. W. Operando X-ray absorption spectroscopy shows iron oxidation is concurrent with oxygen evolution in cobalt-iron (oxy)hydroxide electrocatalysts. Angew. Chem., Int. Ed. 2018, 57, 12840-12844.

29

Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M. J.; Sokaras, D.; Weng, T. C.; Alonso-Mori, R. et al. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305-1313.

30

Walton, A. S.; Lauritsen, J. V.; Topsøe, H.; Besenbacher, F. MoS2 nanoparticle morphologies in hydrodesulfurization catalysis studied by scanning tunneling microscopy. J. Catal. 2013, 308, 306-318.

31

Li, H. S.; Wang, S. S.; Sawada, H.; Han, G. G. D.; Samuels, T.; Allen, C. S.; Kirkland, A. I.; Grossman, J. C.; Warner, J. H. Atomic structure and dynamics of single platinum atom interactions with monolayer MoS2. ACS Nano 2017, 11, 3392-3403.

32

Li, D.; Niu, Y.; Zhao, H. M.; Liang, C. J.; He, Z. Q. Electronic and magnetic properties of 3D-metal trioxides superhalogen cluster-doped monolayer MoS2: A first-principles study. Phys. Lett. A 2014, 378, 1651-1656.

33

Zuriaga-Monroy, C.; Martínez-Magadán, J. M.; Ramos, E.; Gómez-Balderas, R. A DFT study of the electronic structure of cobalt and nickel mono-substituted MoS2 triangular nanosized clusters. J. Mol. Catal. A: Chem. 2009, 313, 49-54.

34

Lauritsen, J. V.; Kibsgaard, J.; Olesen, G. H.; Moses, P. G.; Hinnemann, B.; Helveg, S.; Nørskov, J. K.; Clausen, B. S.; Topsøe, H.; Lægsgaard, E. et al. Location and coordination of promoter atoms in Co- and Ni-promoted MoS2-based hydrotreating catalysts. J. Catal. 2007, 249, 220-233.

35

Robertson, A. W.; Lin, Y. C.; Wang, S. S.; Sawada, H.; Allen, C. S.; Chen, Q.; Lee, S.; Lee, G. D.; Lee, J.; Han, S. et al. Atomic structure and spectroscopy of single metal (Cr, V) substitutional dopants in monolayer MoS2. ACS Nano 2016, 10, 10227-10236.

36

Morales, E. H.; He, Y. B.; Vinnichenko, M.; Delley, B.; Diebold, U. Surface structure of Sn-doped In2O3 (111) thin films by STM. New J. Phys. 2008, 10, 125030.

37

Myrach, P.; Nilius, N.; Levchenko, S. V.; Gonchar, A.; Risse, T.; Dinse, K. P.; Boatner, L. A.; Frandsen, W.; Horn, R.; Freund, H. J. et al. Temperature-dependent morphology, magnetic and optical properties of Li-doped MgO. ChemCatChem 2010, 2, 854-862.

38

Cui, Y.; Shao, X.; Prada, S.; Giordano, L.; Pacchioni, G.; Freund, H. J.; Nilius, N. Surface defects and their impact on the electronic structure of Mo-doped CaO films: An STM and DFT study. Phys. Chem. Chem. Phys. 2014, 16, 12764-12772.

39

Walsh, A.; Catlow, C. R. A. Structure, stability and work functions of the low index surfaces of pure indium oxide and Sn-doped indium oxide (ITO) from density functional theory. J. Mater. Chem. 2010, 20, 10438-10444.

40

Fu, Q.; Li, W. X.; Yao, Y. X.; Liu, H. Y.; Su, H. Y.; Ma, D.; Gu, X. K.; Chen, L. M.; Wang, Z.; Zhang, H. et al. Interface-confined ferrous centers for catalytic oxidation. Science 2010, 328, 1141-1144.

41

Chen, H.; Liu, Y.; Yang, F.; Wei, M. M.; Zhao, X. F.; Ning, Y. X.; Liu, Q. F.; Zhang, Y.; Fu, Q.; Bao, X. H. Active phase of FeOx/Pt catalysts in low-temperature CO oxidation and preferential oxidation of CO reaction. J. Phys. Chem. C 2017, 121, 10398-10405.

42

Giordano, L.; Lewandowski, M.; Groot, I. M. N.; Sun, Y. N.; Goniakowski, J.; Noguera, C.; Shaikhutdinov, S.; Pacchioni, G.; Freund, H. J. Oxygen-induced transformations of an FeO(111) film on Pt(111): A combined DFT and STM study. J. Phys. Chem. C 2010, 114, 21504-21509.

43

Zhang, K.; Li, L. F.; Shaikhutdinov, S.; Freund, H. J. Carbon monoxide oxidation on metal-supported monolayer oxide films: Establishing which interface is active. Angew. Chem., Int. Ed. 2018, 57, 1261-1265.

44

Sun, Y. N.; Qin, Z. H.; Lewandowski, M.; Carrasco, E.; Sterrer, M.; Shaikhutdinov, S.; Freund, H. J. Monolayer iron oxide film on platinum promotes low temperature CO oxidation. J. Catal. 2009, 266, 359-368.

45

Merte, L. R.; Knudsen, J.; Eichhorn, F. M.; Porsgaard, S.; Zeuthen, H.; Grabow, L. C.; Lægsgaard, E.; Bluhm, H.; Salmeron, M.; Mavrikakis, M. et al. CO-induced embedding of Pt adatoms in a partially reduced FeOx film on Pt(111). J. Am. Chem. Soc. 2011, 133, 10692-10695.

46

Li, M.; Altman, E. I. Shape, morphology, and phase transitions during Co oxide growth on Au(111). J. Phys. Chem. C 2014, 118, 12706-12716.

47

Fester, J.; Sun, Z. Z.; Rodríguez-Fernández, J.; Walton, A.; Lauritsen, J. V. Phase transitions of cobalt oxide bilayers on Au(111) and Pt(111): The role of edge sites and substrate interactions. J. Phys. Chem. B 2018, 122, 561-571.

48

Walton, A. S.; Fester, J.; Bajdich, M.; Arman, M. A.; Osiecki, J.; Knudsen, J.; Vojvodic, A.; Lauritsen, J. V. Interface controlled oxidation states in layered cobalt oxide nanoislands on gold. ACS Nano 2015, 9, 2445-2453.

49

Fester, J.; García-Melchor, M.; Walton, A. S.; Bajdich, M.; Li, Z.; Lammich, L.; Vojvodic, A.; Lauritsen, J. V. Edge reactivity and water-assisted dissociation on cobalt oxide nanoislands. Nat. Commun. 2017, 8, 14169.

50

Fester, J.; Bajdich, M.; Walton, A. S.; Sun, Z.; Plessow, P. N.; Vojvodic, A.; Lauritsen, J. V. Comparative analysis of cobalt oxide nanoisland stability and edge structures on three related noble metal surfaces: Au(111), Pt(111) and Ag(111). Top. Catal. 2017, 60, 503-512.

51

Fester, J.; Makoveev, A.; Grumelli, D.; Gutzler, R.; Sun, Z. Z.; Rodríguez-Fernández, J.; Kern, K.; Lauritsen, J. V. The structure of the cobalt oxide/Au catalyst interface in electrochemical water splitting. Angew. Chem., Int. Ed. 2018, 57, 11893-11897.

52

Reticcioli, M.; Sokolović, I.; Schmid, M.; Diebold, U.; Setvin, M.; Franchini, C. Interplay between adsorbates and polarons: CO on rutile TiO2(110). Phys. Rev. Lett. 2019, 122, 016805.

53

Meier, M.; Hulva, J.; Jakub, Z.; Pavelec, J.; Setvin, M.; Bliem, R.; Schmid, M.; Diebold, U.; Franchini, C.; Parkinson, G. S. Water agglomerates on Fe3O4(001). Proc. Natl. Acad. Sci. USA 2018, 115, E5642-E5650.

54

Rodríguez-Fernández, J.; Sun, Z. Z.; Zhang, L.; Tan, T.; Curto, A.; Fester, J.; Vojvodic, A.; Lauritsen, J. V. Structural and electronic properties of Fe dopants in cobalt oxide nanoislands on Au(111). J. Chem. Phys. 2019, 150, 041731.

55

Giordano, L.; Pacchioni, G.; Goniakowski, J.; Nilius, N.; Rienks, E. D. L.; Freund, H. J. Interplay between structural, magnetic, and electronic properties in a FeO/Pt (111) ultrathin film. Phys. Rev. B 2007, 76, 075416.

56

Cullen, W. G.; First, P. N. Island shapes and intermixing for submonolayer nickel on Au(111). Surf. Sci. 1999, 420, 53-64.

57

Voloshina, E. N.; Fertitta, E.; Garhofer, A.; Mittendorfer, F.; Fonin, M.; Thissen, A.; Dedkov, Y. S. Electronic structure and imaging contrast of graphene moiré on metals. Sci. Rep. 2013, 3, 1072.

58

Bruix, A.; Miwa, J. A.; Hauptmann, N.; Wegner, D.; Ulstrup, S.; Grønborg, S. S.; Sanders, C. E.; Dendzik, M.; Grubišić Čabo, A.; Bianchi, M. et al. Single-layer MoS2 on Au(111): Band gap renormalization and substrate interaction. Phys. Rev. B 2016, 93, 165422.

Nano Research
Pages 2364-2372
Cite this article:
Curto A, Sun Z, Rodríguez-Fernández J, et al. Anisotropic iron-doping patterns in two-dimensional cobalt oxide nanoislands on Au(111). Nano Research, 2019, 12(9): 2364-2372. https://doi.org/10.1007/s12274-019-2474-9
Topics:
Part of a topical collection:

699

Views

5

Crossref

N/A

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 10 June 2019
Revised: 05 July 2019
Accepted: 06 July 2019
Published: 01 August 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return