AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

MoS2 dual-gate transistors with electrostatically doped contacts

Fuyou Liao1<Yaocheng Sheng1<Zhongxun Guo1Hongwei Tang1Yin Wang1Lingyi Zong1Xinyu Chen1Antoine Riaud1Jiahe Zhu3Yufeng Xie1Lin Chen1Hao Zhu1Qingqing Sun1Peng Zhou1Xiangwei Jiang4Jing Wan2( )Wenzhong Bao1( )David Wei Zhang1
State Key Laboratory of ASIC and System,School of Microelectronics, Fudan University,Shanghai,200433,China;
State Key Laboratory of ASIC and System,School of Information Science and Engineering, Fudan University,Shanghai,200433,China;
School of Electronic Science and Engineering,Nanjing University,Nanjing,210093,China;
Institute of Semiconductors,Chinese Academy of Sciences,Beijing,100083,China;

§ Fuyou Liao and Yaocheng Sheng contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Two-dimensional (2D) transition metal dichalcogenides (TMDs) such as molybdenum disulfide (MoS2) have been intensively investigated because of their exclusive physical properties for advanced electronics and optoelectronics. In the present work, we study the MoS2 transistor based on a novel tri-gate device architecture, with dual-gate (Dual-G) in the channel and the buried side-gate (Side-G) for the source/drain regions. All gates can be independently controlled without interference. For a MoS2 sheet with a thickness of 3.6 nm, the Schottky barrier (SB) and non-overlapped channel region can be effectively tuned by electrostatically doping the source/drain regions with Side-G. Thus, the extrinsic resistance can be effectively lowered, and a boost of the ON-state current can be achieved. Meanwhile, the channel control remains efficient under the Dual-G mode, with an ON-OFF current ratio of 3 × 107 and subthreshold swing of 83 mV/decade. The corresponding band diagram is also discussed to illustrate the device operation mechanism. This novel device structure opens up a new way toward fabrication of high-performance devices based on 2D-TMDs.

Electronic Supplementary Material

Download File(s)
12274_2019_2478_MOESM1_ESM.pdf (2.4 MB)

References

1

Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780-793.

2

Bonaccorso, F.; Colombo, L.; Yu, G. H.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. 2D materials. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501.

3

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.

4

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

5

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.

6

Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898-2926.

7

Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphene-like two-dimensional materials. Chem. Rev. 2013, 113, 3766-3798.

8

Wu, J. Y.; Chun, Y. T.; Li, S. P.; Zhang, T.; Wang, J. Z.; Shrestha, P. K.; Chu, D. P. Broadband MoS2 field-effect phototransistors: Ultrasensitive visible-light photoresponse and negative infrared photoresponse. Adv. Mater. 2018, 30, 1705880.

9

Wu, G. J.; Wang, X. D.; Chen, Y.; Wang, Z.; Shen, H.; Lin, T.; Hu, W. D.; Wang, J. L.; Zhang, S. T.; Meng, X. J. et al. Ultrahigh photoresponsivity MoS2 photodetector with tunable photocurrent generation mechanism. Nanotechnology 2018, 29, 485204.

10

Desai, S. B.; Madhvapathy, S. R.; Sachid, A. B.; Llinas, J. P.; Wang, Q. X.; Ahn, G. H.; Pitner, G.; Kim, M. J.; Bokor, J.; Hu, C. M. et al. MoS2 transistors with 1-nanometer gate lengths. Science 2016, 354, 99-102.

11

Lee, H. S.; Min, S. W.; Park, M. K.; Lee, Y. T.; Jeon, P. J.; Kim, J. H.; Ryu, S.; Im, S. MoS2 nanosheets for top-gate nonvolatile memory transistor channel. Small 2012, 8, 3111-3115.

12

Radisavljevic, B.; Whitwick, M. B.; Kis, A. Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 2011, 5, 9934-9938.

13

Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320-2325.

14

Sundaram, R. S.; Engel, M.; Lombardo, A.; Krupke, R.; Ferrari, A. C.; Avouris, P.; Steiner, M. Electroluminescence in single layer MoS2. Nano Lett. 2013, 13, 1416-1421.

15

Huang, Z. Y.; Han, W. J.; Tang, H. L.; Ren, L.; Chander, D. S.; Qi, X.; Zhang, H. Photoelectrochemical-type sunlight photodetector based on MoS2/ graphene heterostructure. 2D Mater. 2015, 2, 035011.

16

Wachter, S.; Polyushkin, D. K.; Bethge, O.; Mueller, T. A microprocessor based on a two-dimensional semiconductor. Nat. Commun. 2017, 8, 14948.

17

Yu, C. H.; Fan, M. L.; Yu, K. C.; Hu, V. P. H.; Su, P.; Chuang, C. T. Evaluation of monolayer and bilayer 2-D transition metal dichalcogenide devices for SRAM applications. IEEE Trans. Electron Devices 2016, 63, 625-630.

18

Kshirsagar, C. U.; Xu, W. C.; Su, Y.; Robbins, M. C.; Kim, C. H.; Koester, S. J. Dynamic memory cells using MoS2 field-effect transistors demonstrating femtoampere leakage currents. ACS Nano 2016, 10, 8457-8464.

19

Kiriya, D.; Tosun, M.; Zhao, P. D.; Kang, J. S.; Javey, A. Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J. Am. Chem. Soc. 2014, 136, 7853-7856.

20

Gong, Y. J.; Liu, Z.; Lupini, A. R.; Shi, G.; Lin, J. H.; Najmaei, S.; Lin, Z.; Elías, A. L.; Berkdemir, A.; You, G. et al. Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide. Nano Lett. 2014, 14, 442-449.

21

Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013, 13, 100-105.

22

Yoon, J.; Park, W.; Bae, G. Y.; Kim, Y.; Jang, H. S.; Hyun, Y.; Lim, S. K.; Kahng, Y. H.; Hong, W. K.; Lee, B. H. et al. Highly flexible and transparent multilayer MoS2 transistors with graphene electrodes. Small 2013, 9, 3295-3300.

23

Liu, H.; Neal, A. T.; Ye, P. D. Channel length scaling of MoS2 MOSFETs. ACS Nano 2012, 6, 8563-8569.

24

Lee, Y. T.; Choi, K.; Lee, H. S.; Min, S. W.; Jeon, P. J.; Hwang, D. K.; Choi, H. J.; Im, S. Graphene versus ohmic metal as source-drain electrode for MoS2 nanosheet transistor channel. Small 2014, 10, 2356-2361.

25

Wang, Y.; Kim, J. C.; Wu, R. J.; Martinez, J.; Song, X. J.; Yang, J.; Zhao, F.; Mkhoyan, A.; Jeong, H. Y.; Chhowalla, M. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 2019, 568, 70-74.

26

Yang, L. M.; Majumdar, K.; Liu, H.; Du, Y. C.; Wu, H.; Hatzistergos, M.; Hung, P. Y.; Tieckelmann, R.; Tsai, W.; Hobbs, C. et al. Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett. 2014, 14, 6275-6280.

27

Du, Y. C.; Liu, H.; Neal, A. T.; Si, M. W.; Ye, P. D. Molecular doping of multilayer MoS2 field-effect transistors: Reduction in sheet and contact resistances. IEEE Electron Device Lett. 2013, 34, 1328-1330.

28

Fang, H.; Tosun, M.; Seol, G.; Chang, T. C.; Takei, K.; Guo, J.; Javey, A. Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. Nano Lett. 2013, 13, 1991-1995.

29

Xu, K.; Wang, Y.; Zhao, Y. D.; Chai, Y. Modulation doping of transition metal dichalcogenide/oxide heterostructures. J. Mater. Chem. C 2017, 5, 376-381.

30

Zhou, C. J.; Zhao, Y. D.; Raju, S.; Wang, Y.; Lin, Z. Y.; Chan, M. S.; Chai, Y. Carrier type control of WSe2 field-effect transistors by thickness modulation and MoO3 layer doping. Adv. Funct. Mater. 2016, 26, 4223-4230.

31

Chee, S. S.; Seo, D.; Kim, H.; Jang, H.; Lee, S.; Moon, S. P.; Lee, K. H.; Kim, S. W.; Choi, H.; Ham, M. H. Lowering the schottky barrier height by graphene/Ag electrodes for high-mobility MoS2 field-effect transistors. Adv. Mater. 2019, 31, 1804422.

32

Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696-700.

33

Zhang, X.; Grajal, J.; Vazquez-Roy, J. L.; Radhakrishna, U.; Wang, X. X.; Chern, W.; Zhou, L.; Lin, Y. X.; Shen, P. C.; Ji, X. et al. Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature 2019, 566, 368-372.

34

Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128-1134.

35

Müller, M. R.; Salazar, R.; Fathipour, S.; Xu, H.; Kallis, K.; Künzelmann, U.; Seabaugh, A.; Appenzeller, J.; Knoch, J. Gate-controlled WSe2 transistors using a buried triple-gate structure. Nanoscale Res. Lett. 2016, 11, 512.

36
Robbins, M. C.; Koester, S. J. Crystal-oriented black phosphorus TFETs with strong band-to-band-tunneling anisotropy and subthreshold slope nearing the thermionic limit. In Proceedings of 2017 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 2017.https://doi.org/10.1109/IEDM.2017.8268399
37

Wang, Z. X.; Wang, F.; Yin, L.; Huang, Y.; Xu, K.; Wang, F. M.; Zhan, X. Y.; He, J. Electrostatically tunable lateral MoTe2 p-n junction for use in high-performance optoelectronics. Nanoscale 2016, 8, 13245-13250.

38

Xu, H. L.; Fathipour, S.; Kinder, E. W.; Seabaugh, A. C.; Fullerton-Shirey, S. K. Reconfigurable ion gating of 2H-MoTe2 field-effect transistors using poly(ethylene oxide)-CsClO4 solid polymer electrolyte. ACS Nano 2015, 9, 4900-4910.

39

Knoch, J.; Chen, Z. H.; Appenzeller, J. Properties of metal-graphene contacts. IEEE Trans. Nanotechnol. 2012, 11, 513-519.

40

Zhang, Y. B.; Tang, T. T.; Girit, C.; Hao, Z.; Martin, M. C.; Zettl, A.; Crommie, M. F.; Shen, Y. R.; Wang, F. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 2009, 459, 820-823.

41

Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210-215.

42

Appenzeller, J.; Knoch, J.; Bjork, M. T.; Riel, H.; Schmid, H.; Riess, W. Toward nanowire electronics. IEEE Trans. Electron Devices 2008, 55, 2827-2845.

43

Appenzeller, J.; Lin, Y. M.; Knoch, J.; Avouris, P. Band-to-band tunneling in carbon nanotube field-effect transistors. Phys. Rev. Lett. 2004, 93, 196805.

44

Hisamoto, D.; Lee, W. C.; Kedzierski, J.; Takeuchi, H.; Asano, K.; Kuo, C.; Anderson, E.; Tsu-Jae, K.; Bokor, J.; Hu, C. M. FinFET-A self-aligned double-gate MOSFET scalable to 20 nm. IEEE Trans. Electron Devices 2000, 47, 2320-2325.

45

Bolshakov, P.; Khosravi, A.; Zhao, P.; Hurley, P. K.; Hinkle, C. L.; Wallace, R. M.; Young, C. D. Dual-gate MoS2 transistors with sub-10 nm top-gate high-k dielectrics. Appl. Phys. Lett. 2018, 112, 253502.

46
Nourbakhsh, A.; Zubair, A.; Huang, S.; Ling, X.; Dresselhaus, M. S.; Kong, J.; de Gendt, S.; Palacios, T. 15-nm channel length MoS2 FETs with single- and double-gate structures. In Proceedings of 2015 Symposium on VLSI Technology, Kyoto, Japan, 2015, pp T28-T29.https://doi.org/10.1109/VLSIT.2015.7223690
47

Liu, H.; Si, M. W.; Najmaei, S.; Neal, A. T.; Du, Y. C.; Ajayan, P. M.; Lou, J.; Ye, P. D. Statistical study of deep submicron dual-gated field-effect transistors on monolayer chemical vapor deposition molybdenum disulfide films. Nano Lett. 2013, 13, 2640-2646.

48

Liu, H.; Ye, P. D. MoS2 dual-gate MOSFET with atomic-layer-deposited Al2O3 as top-gate dielectric. IEEE Electron Device Lett. 2012, 33, 546-548.

49

Liu, H.; Si, M. W.; Deng, Y. X.; Neal, A. T.; Du, Y. C.; Najmaei, S.; Ajayan, P. M.; Lou, J.; Ye, P. D. Switching mechanism in single-layer molybdenum disulfide transistors: An insight into current flow across schottky barriers. ACS Nano 2014, 8, 1031-1038.

50

Larentis, S.; Fallahazad, B.; Tutuc, E. Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers. Appl. Phys. Lett. 2012, 101, 223104.

51

Yin, Z. Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. D.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano 2012, 6, 74-80.

52

Kim, J. H.; Kim, T. H.; Lee, H.; Park, Y. R.; Choi, W.; Lee, C. J. Thickness-dependent electron mobility of single and few-layer MoS2 thin-film transistors. AIP Adv. 2016, 6, 065106.

53

Bharathi, N. D.; Sivasankaran, K. Research progress and challenges of two dimensional MoS2 field effect transistors. J. Semicond. 2018, 39, 104002.

54

Ghibaudo, G. New method for the extraction of MOSFET parameters. Electron. Lett. 1988, 24, 543-545.

55

Zheng, X. R.; Calò, A.; Albisetti, E.; Liu, X. Y.; Alharbi, A. S. M.; Arefe, G.; Liu, X. C.; Spieser, M.; Yoo, W. J.; Taniguchi, T. et al. Patterning metal contacts on monolayer MoS2 with vanishing Schottky barriers using thermal nanolithography. Nat. Electron. 2019, 2, 17-25.

56

Sze, S. M.; Ng, K. K. Physics of Semiconductor Devices, 3rd ed.; Wiley: Hoboken, NJ, USA, 2007.

57

Singer, P. Dual gate control provides threshold voltage options. Semicond. Int. 2003, 26, 28.

58

Ghatak, S.; Pal, A. N.; Ghosh, A. Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano 2011, 5, 7707-7712.

Nano Research
Pages 2515-2519
Cite this article:
Liao F, Sheng Y, Guo Z, et al. MoS2 dual-gate transistors with electrostatically doped contacts. Nano Research, 2019, 12(10): 2515-2519. https://doi.org/10.1007/s12274-019-2478-5
Topics:

855

Views

28

Crossref

N/A

Web of Science

27

Scopus

1

CSCD

Altmetrics

Received: 27 April 2019
Revised: 24 June 2019
Accepted: 12 July 2019
Published: 01 August 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return