AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Antiferromagnetic element Mn modified PtCo truncated octahedral nanoparticles with enhanced activity and durability for direct methanol fuel cells

Qiqi Zhang1<Jialong Liu2<Tianyu Xia3( )Jie Qi1Haochang Lyu1Baoyuan Luo1Rongming Wang4Yizhong Guo5Lihua Wang5Shouguo Wang1,4( )
Beijing Advanced Innovation Center for Materials Genome Engineering,School of Materials Science and Engineering, University of Science and Technology Beijing,Beijing,100083,China;
Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing,100029,China;
Key Laboratory of Material Physics of Ministry of Education,School of Physics and Engineering, Zhengzhou University,Zhengzhou,450052,China;
Institute for multidisciplinary Innovation,University of Science and Technology Beijing,Beijing,100083,China;
Beijng Key Lab of Microstructure and Property of Advanced Materials,Beijing University of Technology,Beijing,100124,China;

§ Qiqi Zhang and Jialong Liu contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Pt-based magnetic nanocatalysts are one of the most suitable candidates for electrocatalytic materials due to their high electrochemistry activity and retrievability. Unfortunately, the inferior durability prevents them from being scaled-up, limiting their commercial applications. Herein, an antiferromagnetic element Mn was introduced into PtCo nanostructured alloy to synthesize uniform Mn-PtCo truncated octahedral nanoparticles (TONPs) by one-pot method. Our results show that Mn can tune the blocking temperature of Mn-PtCo TONPs due to its antiferromagnetism. At low temperatures, Mn-PtCo TONPs are ferromagnetic, and the coercivity increases gradually with increasing Mn contents. At room temperature, the Mn-PtCo TONPs display superparamagnetic behavior, which is greatly helpful for industrial recycling. Mn doping can not only modify the electronic structure of PtCo TONPs but also enhance electrocatalytic performance for methanol oxidation reaction. The maximum specific activity of Mn-PtCo-3 reaches 8.1 A·m-2, 3.6 times of commercial Pt/C (2.2 A·m-2) and 1.4 times of PtCo TONPs (5.6 A·m-2), respectively. The mass activity decreases by only 30% after 2, 000 cycles, while it is 45% and 99% (nearly inactive) for PtCo TONPs and commercial Pt/C catalysts, respectively.

Electronic Supplementary Material

Download File(s)
12274_2019_2479_MOESM1_ESM.pdf (6.5 MB)

References

1

Chung, D. Y.; Yoo, J. M.; Sung, Y. E. Highly durable and active Pt-based nanoscale design for fuel-cell oxygen-reduction electrocatalysts. Adv. Mater. 2018, 30, 1704123.

2

Guo, S. J.; Zhang, S.; Sun, S. H. Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 8526-8544.

2

Liu, J. L.; Xia, T. Y.; Wang, S. G.; Yang, G.; Dong, B. W.; Wang, C.; Ma, Q. D.; Sun, Y.; Wang, R. M. Oriented-assembly of hollow FePt nanochains with tunable catalytic and magnetic properties. Nanoscale 2016, 8, 11432-11440.

4

Xue, S. F.; Deng, W. T.; Yang, F.; Yang, J. L.; Amiinu, I. S.; He, D. P.; Tang, H. L.; Mu, S. C. Hexapod PtRuCu nanocrystalline alloy for highly efficient and stable methanol oxidation. ACS Catal. 2018, 8, 7578-7584.

5

Gauthier, Y.; Schmid, M.; Padovan, S.; Lundgren, E.; Buš, V.; Kresse, G.; Redinger, J.; Varga, P. Adsorption sites and ligand effect for CO on an alloy surface: A direct view. Phy. Rev. Lett. 2001, 87, 036103.

6

Mavrikakis, M.; Hammer, B.; Nørskov, J. K. Effect of strain on the reactivity of metal surfaces. Phy. Rev. Lett. 1998, 81, 2819-2822.

7

Sun, S. H.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 2000, 287, 1989-1992.

8

Kaur, M.; Johnson, A.; Tian, G. X.; Jiang, W. L.; Rao, L. F.; Paszczynski, A.; Qiang, Y. Separation nanotechnology of diethylenetriaminepentaacetic acid bonded magnetic nanoparticles for spent nuclear fuel. Nano Energy 2013, 2, 124-132.

9

Cai, Z.; Kuang, Y.; Qi, X. H.; Wang, P.; Zhang, Y.; Zhang, Z. C.; Sun, X. M. Ultrathin branched PtFe and PtRuFe nanodendrites with enhanced electrocatalytic activity. J. Mater. Chem. A 2015, 3, 1182-1187.

10

Guerrero-Ortega, L. P. A; Manzo-Robledo, A.; Ramírez-Meneses, E. R.; Mateos-Santiago, J.; Lartundo-Rojas, L.; Garibay-Febles, V. Methanol electro-oxidation reaction at the interface of (bi)-metallic (PtNi) synthesized nanoparticles supported on carbon Vulcan. Int. J. Hydrogen Energy 2018, 43, 6117-6130.

11

Xia, T. Y.; Liu, J. L.; Wang, S. G.; Wang, C.; Sun, Y.; Wang, R. M. Nanomagnetic CoPt truncated octahedrons: Facile synthesis, superior electrocatalytic activity and stability for methanol oxidation. Sci. China Mater. 2017, 60, 57-67.

12

Xie, J.; Zhang, Q. H.; Gu, L.; Xu, S.; Wang, P.; Liu, J. G.; Ding, Y.; Yao, Y. F.; Nan, C. W.; Zhao, M. et al. Ruthenium-platinum core-shell nanocatalysts with substantially enhanced activity and durability towards methanol oxidation. Nano Energy 2016, 21, 247-257.

13

Zhu, H.; Cai, Y. Z.; Wang, F. H.; Gao, P.; Cao, J. D. Scalable preparation of the chemically ordered Pt-Fe-Au Nanocatalysts with high catalytic reactivity and stability for oxygen reduction reactions. ACS Appl. Mater. Interfaces 2018, 10, 22156-22166.

14

Guedes-Sobrinho, D.; Nomiyama, R. K.; Chaves, A. S.; Piotrowski, M. J.; Da Silva, J. L. F. Structure, electronic, and magnetic properties of binary PtnTM55-n (TM = Fe, Co, Ni, Cu, Zn) nanoclusters: A density functional theory investigation. J. Phys. Chem. C 2015, 119, 15669-15679.

15

Park, J. I.; Kim, M. G.; Jun, Y. W.; Lee, J. S.; Lee, W. R.; Cheon, J. Characterization of superparamagnetic "core-shell" nanoparticles and monitoring their anisotropic phase transition to ferromagnetic "solid solution" nanoalloys. J. Am. Chem. Soc. 2004, 126, 9072-9078.

16

Arán-Ais, R. M.; Dionigi, F.; Merzdorf, T.; Gocyla, M.; Heggen, M.; Dunin-Borkowski R. E.; Gliech, M.; Solla-Gullón, J.; Herrero, E.; Feliu, J. M. et al. Elemental anisotropic growth and atomic-scale structure of shape-controlled octahedral Pt-Ni-Co alloy nanocatalysts. Nano Lett. 2015, 15, 7473-7480.

17

Wang, Y. N.; Liu, Q.; Sun, Y. H.; Wang, R. M. Magnetic field modulated SERS enhancement of CoPt hollow nanoparticles with sizes below 10 nm. Nanoscale 2018, 10, 12650-12656.

18

Kang, J. X.; Chen, T. W.; Zhang, D. F.; Guo, L. PtNiAu trimetallic nanoalloys enabled by a digestive-assisted process as highly efficient catalyst for hydrogen generation. Nano Energy 2016, 23, 145-152.

19

Tang, M.; Luo, S. P.; Wang, K.; Du, H. Y.; Sriphathoorat R.; Shen P. K. Simultaneous formation of trimetallic Pt-Ni-Cu excavated rhombic dodecahedrons with enhanced catalytic performance for the methanol oxidation reaction. Nano Res. 2018, 11, 4786-4795.

20

Lim, J.; Shin, H.; Kim, M. J.; Lee, H.; Lee, K. S.; Kwon, Y.; Song, D.; Oh, S.; Kim, H.; Cho, E. Ga-doped Pt-Ni octahedral nanoparticles as a highly active and durable electrocatalyst for oxygen reduction reaction. Nano Lett. 2018, 18, 2450-2458.

21

Wu, Y. J.; Zhao, Y. G.; Liu, J. J.; Wang, F. Adding refractory 5d transition metal W into PtCo system: An advanced ternary alloy for efficient oxygen reduction reaction. J. Mater. Chem. A 2018, 6, 10700-10709.

22

Xia, B. Y.; Wu, H. B.; Li, N.; Yan, Y.; Lou, X. W.; Wang X. One-pot synthesis of Pt-Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties. Angew. Chem., Int. Ed. 2015, 54, 3797-3801.

23

Chen, L. X.; Zhu, J.; Xuan, C. J.; Xiao, W. P.; Xia, K. D.; Xia, W. W.; Lai, C. L.; Xin, H. L.; Wang, D. L. Effects of crystal phase and composition on structurally ordered Pt-Co-Ni/C ternary intermetallic electrocatalysts for the formic acid oxidation reaction. J. Mater. Chem. A 2018, 6, 5848-5855.

24

Kitchin, J. R.; Nørskov, J. K.; Barteau, M. A.; Chen, J. G. Modification of the surface electronic and chemical properties of Pt (111) by subsurface 3d transition metals. J. Chem. Phys. 2004, 120, 10240-10246.

25

Tian, X. L.; Luo, J. M.; Nan, H. X.; Zou, H. B.; Chen, R.; Shu, T.; Li, X. H.; Li, Y. W.; Song, H. Y.; Liao, S. J. et al. Transition metal nitride coated with atomic layers of Pt as a Low-Cost, highly stable electrocatalyst for the oxygen reduction reaction. J. Am. Chem. Soc. 2016, 138, 1575-1583.

26

Zhang, Z. J.; Chen, X. Y.; Zhang, X. F.; Shi, C. W. Synthesis and magnetic properties of nickel and cobalt nanoparticles obtained in DMF solution. Solid State Commun. 2006, 139, 403-405.

27

Wang, D. S., Li, Y. D. One-pot protocol for Au-based hybrid magnetic nanostructures via a noble-metal-induced reduction process. J. Am. Chem. Soc. 2010, 132, 6280-6281.

28

Gan, L.; Cui, C. H.; Heggen, M.; Dionigi, F.; Rudi, S.; Strasser, P. Element-specific anisotropic growth of shaped platinum alloy nanocrystals. Science 2014, 346, 1502-1506.

29

Barmparis, G. D.; Remediakis, I. N. Dependence on CO adsorption of the shapes of multifaceted gold nanoparticles: A density functional theory. Phys. Rev. B 2012, 86, 085457.

30

Xia, T. Y.; Liu, J. L.; Wang, S. G.; Wang, C.; Sun, Y.; Gu, L.; Wang, R. M. Enhanced catalytic activities of NiPt truncated octahedral nanoparticles toward ethylene glycol oxidation and oxygen reduction in alkaline electrolyte. ACS Appl. Mater. Interfaces 2016, 8, 10841-10849.

31

Zhu, K.; Ju, Y. M.; Xu, J. J.; Yang, Z. Y.; Gao, S.; Hou, Y. L. Magnetic nanomaterials: Chemical design, synthesis, and potential applications. Acc. Chem. Res. 2018, 51, 404-413.

32

Dai, J. T.; Du, Y. K.; Wang, F. W.; Yang, P. PtCo/Au nanocomposite: Synthesis, characterization, and magnetic properties. Physica E 2007, 39, 271-276.

33

Du, X. Y.; Inokuchi, M.; Toshima, N. Preparation and characterization of Co-Pt bimetallic magnetic nanoparticles. J. Magn. Magn. Mater. 2006, 299, 21-28.

34

Fan, H. S.; Cheng, M.; Wang, L.; Song, Y. J.; Cui, Y. M.; Wang, R. M. Extraordinary electrocatalytic performance for formic acid oxidation by the synergistic effect of Pt and Au on carbon black. Nano Energy 2018, 48, 1-9.

35

Lv, H. F.; Peng, T.; Wu, P.; Pan, M.; Mu, S. C. Nano-boron carbide supported platinum catalysts with much enhanced methanol oxidation activity and CO tolerance. J. Mater. Chem. 2012, 22, 9155-9160.

36

Cohen, J. L.; Volpe, D. J.; Abruña, H. D. Electrochemical determination of activation energies for methanol oxidation on polycrystalline platinum in acidic and alkaline electrolytes. Phys. Chem. Chem. Phys. 2007, 9, 49-77.

37

Ding, L. X.; Wang, A. L.; Li, G. R.; Liu, Z. Q.; Zhao, W. X.; Su, C. Y.; Tong, Y. X. Porous Pt-Ni-P composite nanotube arrays: Highly electroactive and durable catalysts for methanol electrooxidation. J. Am. Chem. Soc. 2012, 134, 5730-5733.

38

Rodriguez, J. A., Goodman, D. W. The nature of the metal-metal bond in bimetallic surfaces. Science 1992, 257, 897-903.

39

Lokanathan, M.; Patil, I. M.; Navaneethan, M.; Parey, V.; Thapa, R.; Kakade, B. Designing of stable and highly efficient ordered Pt2CoNi ternary alloy electrocatalyst: The origin of dioxygen reduction activity. Nano Energy 2018, 43, 219-227.

40

Vidaković, T.; Christov, M.; Sundmacher, K. The use of CO stripping for in situ fuel cell catalyst characterization. Electrochim. Acta 2007, 52, 5606-5613.

41

Wakisaka, M.; Mitsui, S.; Hirose, Y.; Kawashima, K.; Uchida, H.; Watanabe, M. Electronic structures of Pt-Co and Pt-Ru alloys for CO-tolerant anode catalysts in polymer electrolyte fuel cells studied by EC-XPS. J. Phys. Chem. B 2006, 110, 23489-23496.

42

Zhang, Z. C.; Tian, X. C.; Zhang, B. W.; Huang, L.; Zhu, F. C.; Qu, X. M.; Liu, L.; Liu, S.; Jiang, Y. X.; Sun, S. G. Engineering phase and surface composition of Pt3Co nanocatalysts: A strategy for enhancing CO tolerance. Nano Energy 2017, 34, 224-232.

43

Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230-1233.

44

Liu, J. L.; Liu, W.; Sun, Q.; Wang, S. G.; Sun, K.; Schwank, J.; Wang, R. M. In situ tracing of atom migration in Pt/NiPt hollow spheres during catalysis of CO oxidation. Chem. Commun. 2014, 50, 1804-1807.

Nano Research
Pages 2520-2527
Cite this article:
Zhang Q, Liu J, Xia T, et al. Antiferromagnetic element Mn modified PtCo truncated octahedral nanoparticles with enhanced activity and durability for direct methanol fuel cells. Nano Research, 2019, 12(10): 2520-2527. https://doi.org/10.1007/s12274-019-2479-4
Topics:

822

Views

21

Crossref

N/A

Web of Science

23

Scopus

4

CSCD

Altmetrics

Received: 30 April 2019
Revised: 04 July 2019
Accepted: 13 July 2019
Published: 08 August 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return