AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Spatially-controlled porous nanoflake arrays derived from MOFs: An efficiently long-life oxygen electrode

Hao Gong1,2Tao Wang1( )Hairong Xue1Xueyi Lu3Wei Xia1Li Song1Songtao Zhang4Jianping He1( )Renzhi Ma2( )
College of Materials Science and Technology,Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, Nanjing University of Aeronautics and Astronautics,Nanjing,210016,China;
International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba,Ibaraki,305-0044,Japan;
School of Chemistry and Chemical Engineering,South China University of Technology, Wushan Road 381,Guangzhou,510641,China;
Testing Center,Yangzhou University,Yangzhou,225009,China;
Show Author Information

Graphical Abstract

Abstract

The urgent expectation of the next-generation energy storage devices for electric vehicles has driven researchers' attention to the lithium-oxygen (Li-O2) batteries due to the satisfied specific energy density. Herein, spatially-controlled Co3O4 nanoflake arrays with three-dimensional- networked morphology are adopted as flexible and self-standing oxygen cathodes in Li-O2 batteries. The spinel-phase Co3O4 nanoflakes were converted from two-dimension metal-organic frameworks with abundant available channels and large specific surface area. The open-structure nanoflake arrays possess sufficient Li2O2/cathode contact interface, great bifunctional catalytic performance and adequate Li2O2 accommodation, leading to the enhanced electrochemical performance of the Li-O2 batteries. As expected, the binder-free porous Co3O4/CT cathode delivers a high capacity of 6, 509 mAh·g-1 (200 mA·g-1) and enhanced stability over 100 cycles (limited by 1, 000 mAh·g-1). In addition, pouch-type Li-O2 batteries were successfully designed and cycled with Co3O4/CT cathode as oxygen electrodes, demonstrating its potential application for flexible electronics and wearable energy storage devices.

Electronic Supplementary Material

Download File(s)
12274_2019_2480_MOESM1_ESM.pdf (1.8 MB)

References

1

Ma, Z.; Yuan, X. X.; Li, L.; Ma, Z. F.; Wilkinson, D. P.; Zhang, L.; Zhang, J. J. A review of cathode materials and structures for rechargeable lithium-air batteries. Energy Environ. Sci. 2015, 8, 2144-2198.

2

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19-29.

3

Yu, L.; Hu, H.; Wu, H. B.; Lou, X. W. Complex hollow nanostructures: Synthesis and energy-related applications. Adv. Mater. 2017, 29, 1604563.

4

Gong, H.; Wang, T.; Xue, H. R.; Fan, X. L.; Gao, B.; Zhang, H. B.; Shi, L.; He, J. P.; Ye, J. H. Photo-enhanced lithium oxygen batteries with defective titanium oxide as both photo-anode and air electrode. Energy Storage Mater. 2018, 13, 49-56.

5

Wu, S. C.; Yi, J.; Zhu, K.; Bai, S. Y.; Liu, Y.; Qiao, Y.; Ishida, M.; Zhou, H. S. A super-hydrophobic quasi-solid electrolyte for Li-O2 battery with improved safety and cycle life in humid atmosphere. Adv. Energy Mater. 2017, 7, 1601759.

6

Wang, Z. L.; Xu, D.; Xu, J. J.; Zhang, X. B. Oxygen electrocatalysts in metal-air batteries: From aqueous to nonaqueous electrolytes. Chem. Soc. Rev. 2014, 43, 7746-7786.

7

Chang, Z. W.; Xu, J. J.; Zhang, X. B. Recent progress in electrocatalyst for Li-O2 batteries. Adv. Energy Mater. 2017, 7, 1700875.

8

Xue, H. R.; Wu, S. C.; Tang, J.; Gong, H.; He, P.; He, J. P.; Zhou, H. S. Hierarchical porous nickel cobaltate nanoneedle arrays as flexible carbon-protected cathodes for high-performance lithium-oxygen batteries. ACS Appl. Mater. Interfaces 2016, 8, 8427-8435.

9

Thackeray, M. M.; Wolverton, C.; Isaacs, E. D. Electrical energy storage for transportation〞approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 2012, 5, 7854-7863.

10

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652-657.

11

Padbury, R.; Zhang, X. W. Lithium-oxygen batteries〞limiting factors that affect performance. J. Power Sources 2011, 196, 4436-4444.

12

Gong, H.; Xue, H. R.; Wang, T.; Guo, H.; Fan, X. L.; Song, L.; Xia, W.; He, J. P. High-loading nickel cobaltate nanoparticles anchored on three- dimensional N-doped graphene as an efficient bifunctional catalyst for lithium-oxygen batteries. ACS Appl. Mater. Interfaces 2016, 8, 18060-18068.

13

Chen, L. Y.; Guo, X. W.; Han, J. H.; Liu, P.; Xu, X. D.; Hirata, A.; Chen, M. W. Nanoporous metal/oxide hybrid materials for rechargeable lithium- oxygen batteries. J. Mater. Chem. A 2015, 3, 3620-3626.

14

Lu, X. Y.; Yin, Y.; Zhang, L.; Huang, S. Z.; Xi, L. X.; Liu, L. X.; Oswald, S.; Schmidt, O. G. 3D Ag/NiO-Fe2O3/Ag nanomembranes as carbon-free cathode materials for Li-O2 batteries. Energy Storage Mater. 2019, 16, 155-162.

15

Sun, C. W.; Li, F.; Ma, C.; Wang, Y.; Ren, Y. L.; Yang, W.; Ma, Z. H.; Li, J. Q.; Chen, Y. J.; Kim, Y. et al. Graphene-Co3O4 nanocomposite as an efficient bifunctional catalyst for lithium-air batteries. J. Mater. Chem. A 2014, 2, 7188-7196.

16

Sun, B.; Huang, X. D.; Chen, S. Q.; Munroe, P.; Wang, G. X. Porous graphene nanoarchitectures: An efficient catalyst for low charge-overpotential, long life, and high capacity lithium-oxygen batteries. Nano Lett. 2014, 14, 3145-3152.

17

Jian, Z. L.; Liu, P.; Li, F. J.; He, P.; Guo, X. W.; Chen, M. W.; Zhou, H. S. Core-shell-structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li-O2 batteries. Angew. Chem., Int. Ed. 2014, 53, 442-446.

18

Li, F. J.; Zhang, T.; Yamada, Y.; Yamada, A.; Zhou, H. S. Enhanced cycling performance of Li-O2 batteries by the optimized electrolyte concentration of LiTFSA in glymes. Adv. Energy Mater. 2013, 3, 532-538.

19

Zhu, Z.; Kushima, A.; Yin, Z. Y.; Qi, L.; Amine, K.; Lu, J.; Li, J. Anion- redox nanolithia cathodes for Li-ion batteries. Nat. Energy 2016, 1, 16111.

20

McCloskey, B. D.; Addison, D. A viewpoint on heterogeneous electrocatalysis and redox mediation in nonaqueous Li-O2 batteries. ACS Catal. 2017, 7, 772-778.

21

Xia, W.; Mahmood, A.; Liang, Z. B.; Zou, R. Q.; Guo, S. J. Earth-abundant nanomaterials for oxygen reduction. Angew. Chem., Int. Ed. 2016, 55, 2650-2676.

22

Zhao, Q.; Yan, Z. H.; Chen, C. C.; Chen, J. Spinels: Controlled preparation, oxygen reduction/evolution reaction application, and beyond. Chem. Rev. 2017, 117, 10121-10211.

23

Lu, X. Y.; Deng, J. W.; Si, W. P.; Sun, X. L.; Liu, X. H.; Liu, B.; Liu, L. F.; Oswald, S.; Baunack, S.; Grafe, H. J. et al. High-performance Li-O2 batteries with trilayered Pd/MnOx/Pd nanomembranes. Adv. Sci. 2015, 2, 1500113.

24

Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X. A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 2016, 1, 15006.

25

Yin, W.; Shen, Y.; Zou, F.; Hu, X. L.; Chi, B.; Huang, Y. H. Metal-organic framework derived ZnO/ZnFe2O4/C nanocages as stable cathode material for reversible lithium-oxygen batteries. ACS Appl. Mater. Interfaces 2015, 7, 4947-4954.

26

Huang, T.; Chen, Y.; Lee, J. A microribbon hybrid structure of CoOx-MoC encapsulated in N-doped carbon nanowire derived from MOF as efficient oxygen evolution electrocatalysts. Small 2017, 13, 17023.

27

Hou, Y.; Huang, T. Z.; Wen, Z. H.; Mao, S.; Cui, S. M.; Chen, J. H. Metal-organic framework-derived nitrogen-doped core-shell-structured porous Fe/Fe3C@C nanoboxes supported on graphene sheets for efficient oxygen reduction reactions. Adv. Energy Mater. 2014, 4, 1400337.

28

Jia, G.; Zhang, W.; Fan, G. Z.; Li, Z. S.; Fu, D. G.; Hao, W. C.; Yuan, C. W.; Zou, Z. G. Three-dimensional hierarchical architectures derived from surface-mounted metal-organic framework membranes for enhanced electrocatalysis. Angew. Chem., Int. Ed. 2017, 56, 13781-13785.

29

Tang, J.; Wu, S. C.; Wang, T.; Gong, H.; Zhang, H. B.; Alshehri, S. M.; Ahamad, T.; Zhou, H. S.; Yamauchi, Y. Cage-type highly graphitic porous carbon-Co3O4 polyhedron as the cathode of lithium-oxygen batteries. ACS Appl. Mater. Interfaces 2016, 8, 2796-2804.

30

Wu, D. F.; Guo, Z. Y.; Yin, X. B.; Pang, Q. Q.; Tu, B. B.; Zhang, L. J.; Wang, Y. G.; Li, Q. W. Metal-organic frameworks as cathode materials for Li-O2 batteries. Adv. Mater. 2014, 26, 3258-3262.

31

Li, Q.; Xu, P.; Gao, W.; Ma, S. G.; Zhang, G. Q.; Cao, R. G.; Cho, J.; Wang, H. L.; Wu, G. Graphene/graphene-tube nanocomposites templated from cage-containing metal-organic frameworks for oxygen reduction in Li-O2 batteries. Adv. Mater. 2014, 26, 1378-1386.

32

Zhang, J.; Wang, L. J.; Xu, L. L.; Ge, X. M.; Zhao, X.; Lai, M.; Liu, Z. L.; Chen, W. Porous cobalt-manganese oxide nanocubes derived from metal organic frameworks as a cathode catalyst for rechargeable Li-O2 batteries. Nanoscale 2015, 7, 720-726.

33

Wu, F.; Zhang, X. X.; Zhao, T. L.; Chen, R. J.; Ye, Y. S.; Xie, M.; Li, L. Hierarchical mesoporous/macroporous Co3O4 ultrathin nanosheets as free-standing catalysts for rechargeable lithium-oxygen batteries. J. Mater. Chem. A 2015, 3, 17620-17626.

34

Riaz, A.; Jung, K. N.; Chang, W.; Lee, S. B.; Lim, T. H.; Park, S. J.; Song, R. H.; Yoon, S.; Shin, K. H.; Lee, J. W. Carbon-free cobalt oxide cathodes with tunable nanoarchitectures for rechargeable lithium-oxygen batteries. Chem. Commun. 2013, 49, 5984-5986.

35

Liu, Q. C.; Xu, J. J.; Chang, Z. W.; Zhang, X. B. Direct electrodeposition of cobalt oxide nanosheets on carbon paper as free-standing cathode for Li-O2 battery. J. Mater. Chem. A 2014, 2, 6081-6085.

36

Guan, C.; Sumboja, A.; Wu, H. J.; Ren, W. N.; Liu, X. M.; Zhang, H.; Liu, Z. L.; Cheng, C. W.; Pennycook, S. J.; Wang, J. Hollow Co3O4 nanosphere embedded in carbon arrays for stable and flexible solid-state zinc-air batteries. Adv. Mater. 2017, 29, 1704117.

37

Guan, C.; Liu, X. M.; Ren, W. N.; Li, X.; Cheng, C. W.; Wang, J. Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis. Adv. Energy Mater. 2017, 7, 1602391.

38

Chen, R. Z.; Yao, J. F.; Gu, Q. F.; Smeets, S.; Baerlocher, C.; Gu, H. X.; Zhu, D. R.; Morris, W.; Yaghi, O. M.; Wang, H. T. A two-dimensional zeolitic imidazolate framework with a cushion-shaped cavity for CO2 adsorption. Chem. Commun. 2013, 49, 9500-9502.

39

Wang, Z. L.; Xu, D.; Xu, J. J.; Zhang, L. L.; Zhang, X. B. Graphene oxide gel-derived, free-standing, hierarchically porous carbon for high-capacity and high-rate rechargeable Li-O2 batteries. Adv. Funct. Mater. 2012, 22, 3699-3705.

40

Guo, Z. Y.; Zhou, D. D.; Dong, X. L.; Qiu, Z. J.; Wang, Y. G.; Xia, Y. Y. Ordered hierarchical mesoporous/macroporous carbon: A high-performance catalyst for rechargeable Li-O2 batteries. Adv. Mater. 2013, 25, 5668-5672.

41

Varghese, B.; Teo, C. H.; Zhu, Y.; Reddy, M. V.; Chowdari, B. V. R.; Wee, A. T. S.; Tan, V. B. C.; Lim, C. T.; Sow, C. H. Co3O4 nanostructures with different morphologies and their field-emission properties. Adv. Funct. Mater. 2007, 17, 1932-1939.

42

Wu, Z. S.; Ren, W. C.; Wen, L.; Gao, L. B.; Zhao, J. P.; Chen, Z. P.; Zhou, G. M.; Li, F.; Cheng, H. M. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 2010, 4, 3187-3194.

43

Guan, Q.; Cheng, J. L.; Wang, B.; Ni, W.; Gu, G. F.; Li, X. D.; Huang, L.; Yang, G. C.; Nie, F. D. Needle-like Co3O4 anchored on the graphene with enhanced electrochemical performance for aqueous supercapacitors. ACS Appl. Mater. Interfaces 2014, 6, 7626-7632.

44

Wang, S. F.; Sha, Y. J.; Zhu, Y. L.; Xu, X. M.; Shao, Z. P. Modified template synthesis and electrochemical performance of a Co3O4/mesoporous cathode for lithium-oxygen batteries. J. Mater. Chem. A 2015, 3, 16132-16141.

45

Wu, R. B.; Qian, X. K.; Zhou, K.; Wei, J.; Lou, J.; Ajayan, P. M. Porous spinel ZnxCo3-xO4 hollow polyhedra templated for high-rate lithium-ion batteries. ACS Nano 2014, 8, 6297-6303.

46

Avci, C.; Imaz, I.; Carné-Sánchez, A.; Pariente, J. A.; Tasios, N.; Pérez- Carvajal, J.; Alonso, M. I.; Blanco, A.; Dijkstra, M.; López, C. et al. Self-assembly of polyhedral metal-organic framework particles into three- dimensional ordered superstructures. Nat. Chem. 2018, 10, 78-84.

47

Aijaz, A.; Masa, J.; Rösler, C.; Xia, W.; Weide, P.; Botz, A. J. R.; Fischer, R. A.; Schuhmann, W.; Muhler, M. Co@Co3O4 encapsulated in carbon nanotube-grafted nitrogen-doped carbon polyhedra as an advanced bifunctional oxygen electrode. Angew. Chem., Int. Ed. 2016, 55, 4087-4091.

48

Wu, S. C.; Qiao, Y.; Deng, H.; Zhou, H. S. A single ion conducting separator and dual mediator-based electrolyte for high-performance lithium-oxygen batteries with non-carbon cathodes. J. Mater. Chem. A 2018, 6, 9816-9822.

49

Liu, T.; Liu, Q. C.; Xu, J. J.; Zhang, X. B. Cable-type water-survivable flexible Li-O2 battery. Small 2016, 12, 3101-3105.

50

Zhang, T.; Matsuda, H.; Zhou, H. S. Gel-derived cation-π stacking films of carbon nanotube-graphene complexes as oxygen cathodes. ChemSusChem 2014, 7, 2845-2852.

51

Liu, L. L.; Wang, J.; Hou, Y. Y.; Chen, J.; Liu, H. K.; Wang, J. Z.; Wu, Y. P. Self-assembled 3D foam-like NiCo2O4 as efficient catalyst for lithium oxygen batteries. Small 2016, 12, 602-611.

52

Tan, P.; Chen, B.; Xu, H. R.; Cai, W. Z.; He, W.; Liu, M. L.; Shao, Z. P.; Ni, M. Co3O4 nanosheets as active material for hybrid Zn batteries. Small 2018, 14, 1800225.

Nano Research
Pages 2528-2534
Cite this article:
Gong H, Wang T, Xue H, et al. Spatially-controlled porous nanoflake arrays derived from MOFs: An efficiently long-life oxygen electrode. Nano Research, 2019, 12(10): 2528-2534. https://doi.org/10.1007/s12274-019-2480-y
Topics:

854

Views

18

Crossref

N/A

Web of Science

20

Scopus

4

CSCD

Altmetrics

Received: 07 May 2019
Revised: 11 June 2019
Accepted: 13 July 2019
Published: 03 August 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return