AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A stable artificial protective layer for high capacity dendrite-free lithium metal anode

Zhipeng Wen1<Yueying Peng1<Jianlong Cong1Haiming Hua1Yingxin Lin2Jian Xiong1Jing Zeng1Jinbao Zhao1,2( )
State Key Lab of Physical Chemistry of Solid Surfaces,Collaborative Innovation Centre of Chemistry for Energy Materials, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, Engineering Research Center of Electrochemical Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Xiamen University,Xiamen,361005,China;
College of Energy & School of Energy Research,Xiamen University,Xiamen,361102,China;

§ Zhipeng Wen and Yueying Peng contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The metallic lithium (Li) is considered as the most promising anode material for high-energy batteries. Nevertheless, the uncontrollable growth of Li dendrite and unstable electrolyte/electrode interface still hinder the development of Li-based battery. In this work, a novel strategy has been proposed to stabilize Li anode by in-situ polymerizing polypyrrole (PPy) layer on Ni foam (PPy@Ni foam) as an artificial protective layer. The PPy protective layer can effectively decrease the contact between Li metal and electrolyte during cycling. In addition, the morphology characterization shows that the PPy layer can help the even Li deposition underneath the layer, leading to a dendrite-free Li anode. As a result, when deposited 2 mAh·cm-2 Li metal, the PPy@Ni foam can keep stable Coulombic efficiency (99%) during nearly 250 cycles, much better than the pure Ni foam (100 cycles). Even in the case of the Li capacity of 10 mAh·cm-2, the stable cycling performance for 60 cycles can still be achieved. Furthermore, when assembled with LiFePO4 material as the cathode for a full cell, the PPy@Ni foam can keep high capacity retention of 85.5% at 500 cycles. In our work, we provide a simple and effective method to enhance the electrochemical performances of Li metal-based batteries, and reveal a new avenue to design three-dimensional (3D) metallic current collector for protecting the Li metal anode.

Electronic Supplementary Material

Video
12274_2019_2481_MOESM2_ESM.mp4
Download File(s)
12274_2019_2481_MOESM1_ESM.pdf (3.2 MB)

References

1

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403-10473.

2

Kim, H.; Jeong, G.; Kim, Y. U.; Kim, J. H.; Park, C. M.; Sohn, H. J. Metallic anodes for next generation secondary batteries. Chem. Soc. Rev. 2013, 42, 9011-9034.

3

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367.

4

Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167-1176.

5

Wang, J.; Yin, Y. B.; Liu, T.; Yang, X. Y.; Chang, Z. W.; Zhang, X. B. Hybrid electrolyte with robust garnet-ceramic electrolyte for lithium anode protection in lithium-oxygen batteries. Nano Res. 2018, 11, 3434-3441.

6

Li, C. L.; Wang, J.; Chang, Z. W.; Yin, Y. B.; Yang, X. Y.; Zhang, X. B. Preparation and characterization of PAN-LATP composite solid-state electrolyte. Sci. Sin. Chim. 2018, 48, 964-971.

7

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Wei, F.; Zhang, J. G.; Zhang, Q. A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 2016, 3, 1500213.

8

Yang, Y.; Xiong, J.; Zeng, J.; Huang, J. X.; Zhao, J. B. VGCF 3D conducting host coating on glass fiber filters for lithium metal anodes. Chem. Commun. 2018, 54, 1178-1181.

9

Peng, Y. Y.; Wen, Z. P.; Liu, C. Y.; Zeng, J.; Wang, Y. H.; Zhao, J. B. Refining interfaces between electrolyte and both electrodes with carbon nanotube paper for high-loading lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2019, 11, 6986-6994.

10

Ma, J. L.; Yin, Y. B.; Zhang, X. B.; Yan, J. M.; Jiang, Q. Suppressing sodium dendrites by multifunctional polyvinylidene fluoride (PVDF) interlayers with nonthrough pores and high flux/affinity of sodium ions toward long cycle life sodium oxygen-batteries. Adv. Funct. Mater. 2018, 28, 1703931.

11

Cheng, X. Y.; Xian, F.; Hu, Z. L.; Wang, C.; Du, X. F.; Zhang, H. R.; Chen, S. G.; Dong, S. M.; Cui, G. L. Fluorescence probing of active lithium distribution in lithium metal anodes. Angew. Chem., Int. Ed. 2019, 58, 5936-5940.

12

Gao, Y.; Yi, R.; Li, Y. C.; Song, J. X.; Chen, S. R.; Huang, Q. Q.; Mallouk, T. E.; Wang, D. H. General method of manipulating formation, composition, and morphology of solid-electrolyte interphases for stable Li-alloy anodes. J. Am. Chem. Soc. 2017, 139, 17359-17367.

13

Aurbach, D.; Daroux, M. L.; Faguy, P. W.; Yeager, E. Identification of surface films formed on lithium in propylene carbonate solutions. J. Electrochem. Soc. 1987, 134, 1611-1620.

14

Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303-4418.

15

Ma, J. L.; Meng, F. L.; Yu, Y.; Liu, D. P.; Yan, J. M.; Zhang, Y.; Zhang, X. B.; Jiang, Q. Prevention of dendrite growth and volume expansion to give high-performance aprotic bimetallic Li-Na alloy-O2 batteries. Nat. Chem. 2019, 11, 64-70.

16

Xu, J. J.; Liu, Q. C.; Yu, Y.; Wang, J.; Yan, J. M.; Zhang, X. B. In situ construction of stable tissue-directed/reinforced bifunctional separator/ protection film on lithium anode for lithium-oxygen batteries. Adv. Mater. 2017, 29, 1606552.

17

Liu, T.; Xu, J. J.; Liu, Q. C.; Chang, Z. W.; Yin, Y. B.; Yang, X. Y.; Zhang, X. B. Ultrathin, lightweight, and wearable Li-O2 battery with high robustness and gravimetric/volumetric energy density. Small 2017, 13, 1602952.

18

Yang, Y.; Xiong, J.; Lai, S. B.; Zhou, R.; Zhao, M.; Geng, H. B.; Zhang, Y. F.; Fang, Y. X.; Li, C. C.; Zhao, J. B. Vinyl ethylene carbonate as an effective SEI-forming additive in carbonate-based electrolyte for lithium-metal anodes. ACS Appl. Mater. Interfaces 2019, 11, 6118-6125.

19

Aurbach, D.; Zaban, A.; Gofer, Y.; Ely, Y. E.; Weissman, I.; Chusid, O.; Abramson, O. Recent studies of the lithium-liquid electrolyte interface electrochemical, morphological and spectral studies of a few important systems. J. Power Sources 1995, 54, 76-84.

20

Ishikawa, M.; Morita, M.; Asao, M.; Matsuda, Y. Charge/discharge characteristics of carbon fiber with graphite structure in organic electrolytes containing lithium trifluoromethanesulfate and lithium hexafluorophosphate. J. Electrochem. Soc. 1994, 141, 1105-1108.

21

Koch, V. R.; Goldman, J. L.; Mattos, C. J.; Mulvaney, M. Specular lithium deposits from lithium hexafluoroarsenate/diethyl ether electrolytes. J. Electrochem. Soc. 1982, 129, 1-4.

22

Hayashi, K.; Nemoto, Y.; Tobishima, S. I.; Yamaki, J. I. Mixed solvent electrolyte for high voltage lithium metal secondary cells. Electrochim. Acta 1999, 44, 2337-2344.

23

Lu, Y. Y.; Tu, Z. Y.; Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 2014, 13, 961-969.

24

Ye, H.; Zheng, Z. J.; Yao, H. R.; Liu, S. C.; Zuo, T. T.; Wu, X. W.; Yin, Y. X.; Li, N. W.; Gu, J. J.; Cao, F. F. et al. Guiding uniform li plating/ stripping through lithium-aluminum alloying medium for long-life Li metal batteries. Angew. Chem., Int. Ed. 2019, 58, 1094-1099.

25

Ma, L.; Kim, M. S.; Archer, L. A. Stable artificial solid electrolyte interphases for lithium batteries. Chem. Mater. 2017, 29, 4181-4189.

26

Liang, X.; Pang, Q.; Kochetkov, I. R.; Sempere, M. S.; Huang, H.; Sun, X. Q.; Nazar, L. F. A facile surface chemistry route to a stabilized lithium metal anode. Nat. Energy 2017, 2, 17119.

27

Choudhury, S.; Wei, S. Y.; Ozhabes, Y.; Gunceler, D.; Zachman, M. J.; Tu, Z. Y.; Shin, J. H.; Nath, P.; Agrawal, A.; Kourkoutis, L. F. et al. Designing solid-liquid interphases for sodium batteries. Nat. Commun. 2017, 8, 898.

28

Zhao, Q.; Tu, Z. Y.; Wei, S. Y.; Zhang, K. H.; Choudhury, S.; Liu, X. T.; Archer, L. A. Building organic/inorganic hybrid interphases for fast interfacial transport in rechargeable metal batteries. Angew. Chem., Int. Ed. 2018, 57, 992-996.

29

Besenhard, J. O.; Wagner, M. W.; Winter, M.; Jannakoudakis, A. D.; Jannakoudakis, P. D.; Theodoridou, E. Inorganic film-forming electrolyte additives improving the cycling behaviour of metallic lithium electrodes and the self-discharge of carbon-lithium electrodes. J. Power Sources 1993, 44, 413-420.

30

Osaka, T.; Momma, T.; Matsumoto, Y.; Uchida, Y. Surface characterization of electrodeposited lithium anode with enhanced cycleability obtained by CO2 addition. J. Electrochem. Soc. 1997, 144, 1709-1713.

31

Li, W. Y.; Yao, H. B.; Yan, K.; Zheng, G. Y.; Liang, Z.; Chiang, Y. M.; Cui, Y. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 2015, 6, 7436.

32

Markevich, E.; Salitra, G.; Aurbach, D. Fluoroethylene carbonate as an important component for the formation of an effective solid electrolyte interphase on anodes and cathodes for advanced Li-ion batteries. ACS Energy Lett. 2017, 2, 1337-1345.

33

Liu, Q. C.; Xu, J. J.; Yuan, S.; Chang, Z. W.; Xu, D.; Yin, Y. B.; Li, L.; Zhong, H. X.; Jiang, Y. S.; Yan, J. M. et al. Artificial protection film on lithium metal anode toward long-cycle-life lithium-oxygen batteries. Adv. Mater. 2015, 27, 5241-5247.

34

Cheng, X. B.; Yan, C.; Peng, H. J.; Huang, J. Q.; Yang, S. T.; Zhang, Q. Sulfurized solid electrolyte interphases with a rapid Li+ diffusion on dendrite-free Li metal anodes. Energy Storage Mater. 2018, 10, 199-205.

35

Liu, S. F.; Deng, S. J.; Xie, D.; Yao, Z. J.; Zhang, L. Y.; Wang, X. L.; Tu, J. P. In situ solid electrolyte interphase from spray quenching on molten Li: A new way to construct high-performance lithium-metal anodes. Adv. Mater. 2018, 31, 1806470.

36

Liao, K. M.; Wu, S. C.; Mu, X. W.; Lu, Q.; Han, M.; He, P.; Shao, Z. P.; Zhou, H. S. Developing a "water-defendable" and "dendrite-free" lithium- metal anode using a simple and promising GeCl4 pretreatment method. Adv. Mater. 2018, 30, 1705711.

37

Yan, C.; Cheng, X. B.; Tian, Y.; Chen, X.; Zhang, X. Q.; Li, W. J.; Huang, J. Q.; Zhang, Q. Dual-layered film protected lithium metal anode to enable dendrite-free lithium deposition. Adv. Mater. 2018, 30, 1707629.

38

Liu, W.; Lin, D. C.; Pei, A.; Cui, Y. Stabilizing lithium metal anodes by uniform Li-ion flux distribution in nanochannel confinement. J. Am. Chem. Soc. 2016, 138, 15443-15450.

39

Liu, Y. P.; Huang, K.; Fan, Y.; Zhang, Q.; Sun, F.; Gao, T.; Yang, L. W.; Zhong, J. X. Three-dimensional network current collectors supported Si nanowires for lithium-ion battery applications. Electrochim. Acta 2013, 88, 766-771.

40

Schechter, A.; Aurbach, D.; Cohen, H. X-ray photoelectron spectroscopy study of surface films formed on Li electrodes freshly prepared in alkyl carbonate solutions. Langmuir 1999, 15, 3334-3342.

41

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

42

Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215-241.

43

Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.

44

Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113, 6378-6396.

45

Zhao, Y.; Schultz, N. E.; Truhlar, D. G. Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J. Chem. Theory Comput. 2006, 2, 364-382.

46

Hehre, W. J.; Ditchfield, R.; Pople, J. A. Self-consistent molecular orbital methods. XⅡ. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 1972, 56, 2257-2261.

47

Hariharan, P. C.; Pople, J. A. The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta 1973, 28, 213-222.

48

Dill, J. D.; Pople, J. A. Self-consistent molecular orbital methods. XV. Extended Gaussian-type basis sets for lithium, beryllium, and boron. J. Chem. Phys. 1975, 62, 2921-2923.

49

Bannwarth, C.; Ehlert, S.; Grimme, S. GFN2-xTB-An accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. J. Chem. Theory Comput. 2019, 15, 1652-1671.

50

Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graphics 1996, 14, 33-38.

51

Aurbach, D.; Pollak, E.; Elazari, R.; Salitra, G.; Kelley, C. S.; Affinito, J. On the surface chemical aspects of very high energy density, rechargeable Li-sulfur batteries. J. Electrochem. Soc. 2009, 156, A694-A702.

52

Mermilliod, N.; Tanguy, J.; Petiot, F. A study of chemically synthesized polypyrrole as electrode material for battery applications. J. Electrochem. Soc. 1986, 133, 1073-1079.

53

Zhang, X. Q.; Cheng, X. B.; Chen, X.; Yan, C.; Zhang, Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater. 2017, 27, 1605989.

54

Ren, X. D.; Zhang, Y. H.; Engelhard, M. H.; Li, Q. Y.; Zhang, J. G.; Xu, W. Guided lithium metal deposition and improved lithium coulombic efficiency through synergistic effects of LiAsF6 and cyclic carbonate additives. ACS Energy Lett. 2017, 3, 14-19.

55

Wang, Y. K.; Zhang, R. F.; Pang, Y. C.; Chen, X.; Lang, J. X.; Xu, J. J.; Xiao, C. H.; Li, H. L.; Xi, K.; Ding, S. J. Carbon@titanium nitride dual shell nanospheres as multi-functional hosts for lithium sulfur batteries. Energy Storage Mater. 2019, 16, 228-235.

56

Pang, Q.; Kundu, D. P.; Nazar, L. F. A graphene-like metallic cathode host for long-life and high-loading lithium-sulfur batteries. Mater. Horiz. 2016, 3, 130-136.

57

Luo, J.; Fang, C. C.; Wu, N. L. High polarity poly(vinylidene difluoride) thin coating for dendrite-free and high-performance lithium metal anodes. Adv. Energy Mater. 2018, 8, 1701482.

58

Yang, G. H.; Chen, J. D.; Xiao, P. T.; Agboola, P. O.; Shakir, I.; Xu, Y. X. Graphene anchored on Cu foam as a lithiophilic 3D current collector for a stable and dendrite-free lithium metal anode. J. Mater. Chem. A 2018, 6, 9899-9905.

59

Cao, R. G.; Xu, W.; Lv, D. P.; Xiao, J.; Zhang, J. G. Anodes for rechargeable lithium-sulfur batteries. Adv. Energy Mater. 2015, 5, 1402273.

60

Ren, F. H.; Lu, Z. Y.; Zhang, H.; Chen, X. C.; Wu, S. D.; Peng, Z.; Wang, D. Y.; Ye, J. C. Pseudocapacitance induced uniform plating/stripping of Li metal anode in vertical graphene Nanowalls. Adv. Funct. Mater. 2018, 28, 1805638.

61

Jin, S.; Jiang, Y.; Ji, H. X.; Yu, Y. Advanced 3D current collectors for lithium-based batteries. Adv. Mater. 2018, 30, 1802014.

Nano Research
Pages 2535-2542
Cite this article:
Wen Z, Peng Y, Cong J, et al. A stable artificial protective layer for high capacity dendrite-free lithium metal anode. Nano Research, 2019, 12(10): 2535-2542. https://doi.org/10.1007/s12274-019-2481-x
Topics:

831

Views

37

Crossref

N/A

Web of Science

38

Scopus

6

CSCD

Altmetrics

Received: 12 May 2018
Revised: 24 June 2019
Accepted: 13 July 2019
Published: 01 August 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return