AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Safety-reinforced rechargeable Li-CO2 battery based on a composite solid state electrolyte

Rui WangXuejing ZhangYichao CaiQingshun NianZhanliang Tao( )Jun Chen
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education),College of Chemistry, Nankai University,Tianjin,300071,China;
Show Author Information

Graphical Abstract

Abstract

The rechargeable Li-CO2 battery has been receiving significant attention owing to its merits of high energy density and the efficient utilization of CO2. However, the widely application is plagued by severe security risks, such as leakage, flammability and lithium dendrites growth due to the use of liquid organic electrolytes. Here, a composite solid state electrolyte consisting of polyethylene oxide (PEO) and 20 wt.% Li7La3Zr1.4Ta0.6O12 (LLZTO) was prepared and first introduced into Li-CO2 battery to solve the problems. The composite solid state electrolyte exhibited high ionic conductivity (1.03 × 10-3 S·cm-1 at 70 ℃), wide electrochemical window (5 V vs. Li+/Li), good mechanical properties and excellent flexibility. Ultimately, the Li symmetric cell with PEO/LLZTO composite solid state electrolyte can operate 1, 500 h at a current density of 0.1 mA·cm-2. The assembled all-solid-state Li-CO2 battery behaved a long cycle life of 70 cycles at a current density of 100 mA·g-1 with fixed capacity of 1, 000 mAh·g-1. Our work provides new perspective to develop rechargeable all-solid-state Li-CO2 batteries.

Electronic Supplementary Material

Download File(s)
12274_2019_2482_MOESM1_ESM.pdf (3.3 MB)

References

1

Peters, G. P.; Marland, G.; Le Quéré, C.; Boden, T.; Canadell, J. G.; Raupach, M. R. Rapid growth in CO2 emissions after the 2008-2009 global financial crisis. Nat. Climate Change 2012, 2, 2-4.

2

Aurbach, D.; McCloskey, B. D.; Nazar, L. F.; Bruce, P. G. Advances in understanding mechanisms underpinning lithium-air batteries. Nat. Energy 2016, 1, 16128.

3

Xie, Z. J.; Zhang, X.; Zhang, Z.; Zhou, Z. Metal-CO2 batteries on the road: CO2 from contamination gas to energy source. Adv. Mater. 2017, 29, 1605891.

4

Xu, S. M.; Das, S. K.; Archer, L. A. The Li-CO2 battery: A novel method for CO2 capture and utilization. RSC Adv. 2013, 3, 6656-6660.

5

Wang, L.; Pan, J.; Zhang, Y.; Cheng, X. L.; Liu, L. M.; Peng, H. S. A Li-air battery with ultralong cycle life in ambient air. Adv. Mater. 2018, 30, 1704378.

6

Yin, Y. B.; Yang, X. Y.; Chang, Z. W.; Zhu, Y. H.; Liu, T.; Yan, J. M.; Jiang, Q. A water-/fireproof flexible lithium-oxygen battery achieved by synergy of novel architecture and multifunctional separator. Adv. Mater. 2018, 30, 1703791.

7

Chen, J. M.; Zou, K. Y.; Ding, P.; Deng, J.; Zha, C. Y.; Hu, Y. P.; Zhao, X.; Wu, J. L.; Fan, J.; Li, Y. G. Conjugated cobalt polyphthalocyanine as the elastic and reprocessable catalyst for flexible Li-CO2 batteries. Adv. Mater. 2019, 31, 1805484.

8

Jin, Y. C.; Hu, C. G.; Dai, Q. B.; Xiao, Y.; Lin, Y.; Connell, J. W.; Chen, F. Y.; Dai, L. M. High-performance Li-CO2 batteries based on metal-free carbon quantum dot/holey graphene composite catalysts. Adv. Funct. Mater. 2018, 28, 1804630.

9

Li, X.; Yang, S. X.; Feng, N. N.; He, P.; Zhou, H. S. Progress in research on Li-CO2 batteries: Mechanism, catalyst and performance. Chin. J. Catal. 2016, 37, 1016-1024.

10

Li, J. L.; Zhao, H. M.; Qi, H. C.; Sun, X. M.; Song, X. Y.; Guo, Z. Y.; Tamirat, A. G.; Liu, J.; Wang, L.; Feng, S. H. Drawing a pencil-trace cathode for a high-performance polymer-based Li-CO2 battery with redox mediator. Adv. Funct. Mater. 2019, 29, 1806863.

11

Guo, Z. Y.; Li, J. L.; Xia, Y.; Chen, C.; Wang, F. M.; Tamirat, A. G.; Wang, Y. G.; Xia, Y. Y.; Wang, L.; Feng, S. H. A flexible polymer-based Li-air battery using a reduced graphene oxide/Li composite anode. J. Mater. Chem. A 2018, 6, 6022-6032.

12

Zhou, J. W.; Li, X. L.; Yang, C.; Li, Y. C.; Guo, K. K.; Cheng, J. L.; Yuan, D. W.; Song, C. H.; Lu, J.; Wang, B. A quasi-solid-state flexible fiber-shaped Li-CO2 battery with low overpotential and high energy efficiency. Adv. Mater. 2019, 31, 1804439.

13

Ye, H.; Zheng, Z. J.; Yao, H. R.; Liu, S. C.; Zuo, T. T.; Wu, X. W.; Yin, Y. X.; Li, N. W.; Gu, J. J.; Cao, F. F. et al. Guiding uniform Li plating/stripping through lithium-aluminum alloying medium for long-life Li metal batteries. Angew. Chem., Int. Ed. 2019, 58, 1094-1099.

14

Wan, G. J.; Guo, F. H.; Li, H.; Cao, Y. L.; Ai, X. P.; Qian, J. F.; Li, Y. X.; Yang, H. X. Suppression of dendritic lithium growth by in-situ formation of a chemically stable and mechanically strong solid electrolyte interphase. ACS Appl. Mater. Interfaces 2018, 10, 593-601.

15

Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194-206.

16

Li, C.; Guo, Z.; Yang, B.; Liu, Y.; Wang, Y.; Xia, Y. A rechargeable Li-CO2 battery with a gel polymer electrolyte. Angew. Chem., Int. Ed. 2017, 56, 9126-9130.

17

Manthiram, A.; Yu, X. W.; Wang, S. F. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103.

18

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403-10473.

19

Zhang, H.; Li, C. M.; Piszcz, M.; Coya, E.; Rojo, T.; Rodriguez-Martinez, L. M.; Armand, M.; Zhou, Z. B. Single lithium-ion conducting solid polymer electrolytes: Advances and perspectives. Chem. Soc. Rev. 2017, 46, 797-815.

20

Yue, L. P.; Ma, J.; Zhang, J. J.; Zhao, J. W.; Dong, S. M.; Liu, Z. H.; Cui, G. L.; Chen, L. Q. All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Mater. 2016, 5, 139-164.

21

Hu, X. F.; Li, Z. F.; Chen, J. Flexible Li-CO2 batteries with liquid-free electrolyte. Angew. Chem., Int. Ed. 2017, 56, 5785-5789.

22

Song, S. F.; Wu, Y. M.; Tang, W. P.; Deng, F.; Yao, J. Y.; Liu, Z. W.; Hu, R. J.; Alamusi; Wen, Z. Y.; Lu, L. et al. Composite solid polymer electrolyte with garnet nanosheets in poly(ethylene oxide). ACS Sustainable Chem. Eng. 2019, 7, 7163-7170.

23

Zhai, H. W.; Xu, P. Y.; Ning, M. Q.; Cheng, Q.; Mandal, J.; Yang, Y. A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries. Nano Lett. 2017, 17, 3182-3187.

24

He, Z. J.; Chen, L.; Zhang, B. C.; Liu, Y. C.; Fan, L. Z. Flexible poly(ethylene carbonate)/garnet composite solid electrolyte reinforced by poly(vinylidene fluoride-hexafluoropropylene) for lithium metal batteries. J. Power Sources 2018, 392, 232-238.

25

Wang, X.; Zhai, H. W.; Qie, B. Y.; Cheng, Q.; Li, A. J.; Borovilas, J.; Xu, B. Q.; Shi, C. M.; Jin, T. W.; Liao, X. B. et al. Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte. Nano Energy 2019, 60, 205-212.

26

Zhang, J. J; Yang, J. F.; Dong, T. T.; Zhang, M.; Chai, J. C.; Dong, S. M.; Wu, T. Y.; Zhou, X. H.; Cui, G. L. Aliphatic polycarbonate-based solid-state polymer electrolytes for advanced lithium batteries: Advances and perspective. Small 2018, 14, 1800821.

27

Aldalur, I.; Martinez-Ibañez, M.; Krztoń-Maziopa, A.; Piszcz, M.; Armand, M.; Zhang, H. Flowable polymer electrolytes for lithium metal batteries. J. Power Sources 2019, 423, 218-226.

28

Han, F. D.; Zhu, Y. Z.; He, X. F.; Mo, Y. F.; Wang, C. S. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv. Energy Mater. 2016, 6, 1501590.

29

Thompson, T.; Yu, S.; Williams, L.; Schmidt, R. D.; Garcia-Mendez, R.; Wolfenstine, J.; Allen, J. L.; Kioupakis, E.; Siegel, D. J.; Sakamoto, J. Electrochemical window of the Li-ion solid electrolyte Li7La3Zr2O12 (LLZO). ACS Energy Lett. 2017, 2, 462-468.

30

Xia, W. H.; Xu, B. Y.; Duan, H. N.; Tang, X. Y.; Guo, Y. P.; Kang, H. M.; Li, H.; Liu, H. Z. Reaction mechanisms of lithium garnet pellets in ambient air: The effect of humidity and CO2. J. Am. Ceram. Soc. 2017, 100, 2832-2839.

31

Galven, C.; Fourquet, J. L.; Crosnier-Lopez, M. P.; Le Berre, F. Instability of the lithium garnet Li7La3Sn2O12: Li+/H+ exchange and structural study. Chem. Mater. 2011, 23, 1892-1900.

32

Li, Y. T.; Chen, X.; Dolocan, A.; Cui, Z. M.; Xin, S.; Xue, L. G.; Xu, H. H.; Park, K.; Goodenough, J. B. Garnet electrolyte with an ultralow interfacial resistance for Li-metal batteries. J. Am. Chem. Soc. 2018, 140, 6448-6455.

33

Wan, Z. P.; Lei, D. N.; Yang, W.; Liu, C.; Shi, K.; Hao, X. G.; Shen, L.; Lv, W.; Li, B. H.; Yang, Q. H. et al. Low resistance-integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder. Adv. Funct. Mater. 2019, 29, 1805301.

34

Zhang, J. J.; Zang, X.; Wen, H. J.; Dong, T. T.; Chai, J. C.; Li, Y.; Chen, B. B.; Zhao, J. W.; Dong, S. M.; Ma, J. et al. High-voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery. J. Mater. Chem. A 2017, 5, 4940-4948.

35

Wang, X. C.; Zhang, X. J.; Lu, Y.; Yan, Z. H.; Tao, Z. L.; Jia, D. Z.; Chen, J. Flexible and tailorable Na-CO2 batteries based on an all-solid-state polymer electrolyte. ChemElectroChem 2018, 5, 3628-3632.

36

Chen, L.; Li, Y. T.; Li, S. P.; Fan, L. Z.; Nan, C. W.; Goodenough, J. B. PEO/garnet composite electrolytes for solid-state lithium batteries: From "ceramic-in-polymer" to "polymer-in-ceramic". Nano Energy 2018, 46, 176-184.

37

Chen, F.; Yang, D. J.; Zha, W. P.; Zhu, B. D.; Zhang, Y. H.; Li, J. Y.; Gu, Y. P.; Shen, Q.; Zhang, L. M.; Sadoway, D. R. Solid polymer electrolytes incorporating cubic Li7La3Zr2O12 for all-solid-state lithium rechargeable batteries. Electrochim. Acta 2017, 258, 1106-1114.

38

Zhang, J. X.; Zhao, N.; Zhang, M.; Li, Y. Q.; Chu, P. K.; Guo, X. X.; Di, Z. F.; Wang, X.; Li, H. Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Energy 2016, 28, 447-454.

39

Zhang, X.; Liu, T.; Zhang, S. F.; Huang, X.; Xu, B. Q.; Lin, Y. H.; Xu, B.; Li, L. L.; Nan, C. W.; Shen, Y. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J. Am. Chem. Soc. 2017, 139, 13779-13785.

40

Lu, Y. Y.; Tikekar, M.; Mohanty, R.; Hendrickson, K.; Ma, L.; Archer, L. A. Stable cycling of lithium metal batteries using high transference number electrolytes. Adv. Energy Mater. 2015, 5, 1402073.

41

Zhao, C. Z.; Zhang, X. Q.; Cheng, X. B.; Zhang, R.; Xu, R.; Chen, P. Y.; Peng, H. J.; Huang, J. Q.; Zhang, Q. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc. Natl. Acad. Sci. USA 2017, 114, 11069-11074.

42

Zhang, P. F.; Lu, Y. Q.; Wu, Y. J.; Yin, Z. W.; Li, J. T.; Zhou, Y.; Hong, Y. H.; Li, Y. Y.; Huang, L.; Sun, S. G. High-performance rechargeable Li-CO2/O2 battery with Ru/N-doped CNT catalyst. Chem. Eng. J. 2019, 363, 224-233.

43

Zhao, H. M.; Li, D. D.; Li, H. D.; Tamirat, A. G.; Song, X. Y.; Zhang, Z. X.; Wang, Y. G.; Guo, Z. Y.; Wang, L.; Feng, S. H. Ru nanosheet catalyst supported by three-dimensional nickel foam as a binder-free cathode for Li-CO2 batteries. Electrochim. Acta 2019, 299, 592-599.

44

Wang, C. Y.; Zhang, Q. M.; Zhang, X.; Wang, X. G.; Xie, Z. J.; Zhou, Z. Fabricating Ir/C nanofiber networks as free-standing air cathodes for rechargeable Li-CO2 batteries. Small 2018, 14, 1800641.

Nano Research
Pages 2543-2548
Cite this article:
Wang R, Zhang X, Cai Y, et al. Safety-reinforced rechargeable Li-CO2 battery based on a composite solid state electrolyte. Nano Research, 2019, 12(10): 2543-2548. https://doi.org/10.1007/s12274-019-2482-9
Topics:

843

Views

39

Crossref

N/A

Web of Science

36

Scopus

4

CSCD

Altmetrics

Received: 17 May 2019
Revised: 27 June 2019
Accepted: 13 July 2019
Published: 05 August 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return