AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Phase-controlled synthesis of thermally stable nitrogen-doped carbon supported iron catalysts for highly efficient Fischer-Tropsch synthesis

Jin Hee Lee1,2Hack-Keun Lee1Dong Hyun Chun1,3Hyunkyung Choi4Geun Bae Rhim1Min Hye Youn1Heondo Jeong1Shin Wook Kang1Jung-Il Yang1Heon Jung1Chul Sung Kim4( )Ji Chan Park1,3( )
Clean Fuel Laboratory,Korea Institute of Energy Research,Daejeon,34129,Republic of Korea;
Department of Chemical Engineering,University of Seoul,Seoul,02504,Republic of Korea;
Advanced Energy and System Technology,University of Science and Technology,Daejeon,34113,Republic of Korea;
Department of Physics,Kookmin University,Seoul,02707,Republic of Korea;
Show Author Information

Graphical Abstract

Abstract

Iron-based nanoparticles with uniform and high particle dispersion, which are supported on carbon structures, have been used for various applications. However, their preparation still suffers from complicated synthesis involving multiple steps and from the high price of precursors and solvents. In the present work, a new carbon encapsulated iron-carbide nanoparticle supported on nitrogen-doped porous carbon (Fe5C2@C/NPC) structure was introduced. It was made using a simple solid-state reaction with sequential thermal treatments. Fe5C2@C/NPC is a highly active and stable catalyst for the high-temperature Fischer-Tropsch synthesis reaction. It showed very high hydrocarbon productivity (4.71 gHC∙gcat-1∙h-1) with high CO conversions (up to 96%).

Electronic Supplementary Material

Download File(s)
12274_2019_2487_MOESM1_ESM.pdf (2.3 MB)

References

1

Sun, B.; Xu, K.; Nguyen, L.; Qiao, M. H.; Tao, F. Preparation and catalysis of carbon-supported iron catalysts for Fischer-Tropsch synthesis. ChemCatChem 2012, 4, 1498-1511.

2

Moussa, S. O.; Panchakarla, L. S.; Ho, M. Q.; El-Shall, M. S. Graphene- supported, iron-based nanoparticles for catalytic production of liquid hydrocarbons from synthesis gas: The role of the graphene support in comparison with carbon nanotubes. ACS Catal. 2014, 4, 535-545.

3

Yan, P. Q.; Guo, W. H.; Liang, Z. B.; Meng, W.; Yin, Z.; Li, S. W.; Li, M. Z.; Zhang, M. T.; Yan, J.; Xiao, D. Q. et al. Highly efficient K-Fe/C catalysts derived from metal-organic frameworks towards ammonia synthesis. Nano Res., in press, https://doi.org/10.1007/s12274-019-2349-0.

4

Jiang, J. W.; Gu, L.; Li, L.; Zhang, Y.; Zhang, X.; Zhang, L. J.; Wang, J. Q.; Hu, J. S.; Wei, Z. D.; Wan, L. J. Understanding the high activity of Fe-N-C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe-Nx. J. Am. Chem. Soc. 2016, 138, 3570-3578.

5

Jaiswal, G.; Landge, V. G.; Jagadeesan, D.; Balaraman, E. Iron-based nanocatalyst for the acceptorless dehydrogenation reactions. Nat. Commun. 2017, 8, 2147.

6

Gangwar, A.; Varghese, S. S.; Meena, S. S.; Prajapat, C. L.; Gupta, N.; Prasad, N. K. Fe3C nanoparticles for magnetic hyperthermia application. J. Magn. Magn. Mater. 2019, 481, 251-256.

7

Wang, X. X.; Zhang, S. W.; Li, J. X.; Xu, J. Z.; Wang, X. K. Fabrication of Fe/Fe3C@porous carbon sheets from biomass and their application for simultaneous reduction and adsorption of uranium(VI) from solution. Inorg. Chem. Front. 2014, 1, 641-648.

8

Liu, H. D.; Zhang, J. L.; Xu, D. D.; Huang, L. H.; Tan, S. Z.; Mai, W. J. Easy one-step hydrothermal synthesis of nitrogen-doped reduced graphene oxide/iron oxide hybrid as efficient supercapacitor material. J. Solid State Electrochem. 2015, 19, 135-144.

9

Zhang, Q. H.; Kang, J. C.; Wang, Y. Development of novel catalysts for Fischer-Tropsch synthesis: Tuning the product selectivity. ChemCatChem 2010, 2, 1030-1058.

10

Steynberg, A. P.; Espinoza, R. L.; Jager, B. L.; Vosloo, A. C. High temperature Fischer-Tropsch synthesis in commercial practice. Appl. Catal. A: Gen. 1999, 186, 41-54.

11

Torres Galvis, H. M.; Bitter, J. H.; Khare, C. B.; Ruitenbeek, M.; Dugulan, A. I.; De Jong, K. P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science 2012, 335, 835-838.

12

Park, J. C.; Yeo, S. C.; Chun, D. H.; Lim, J. T.; Yang, J. I.; Lee, H. T.; Hong, S.; Lee, H. M.; Kim, C. S.; Jung, H. Highly activated K-doped iron carbide nanocatalysts designed by computational simulation for Fischer- Tropsch synthesis. J. Mater. Chem. A 2014, 2, 14371-14379.

13

Hong, S. Y.; Chun, D. H.; Yang, J. I.; Jung, H.; Lee, H. T.; Hong, S.; Jang, S.; Lim, J. T.; Kim, C. S.; Park, J. C. A new synthesis of carbon encapsulated Fe5C2 nanoparticles for high-temperature Fischer-Tropsch synthesis. Nanoscale 2015, 7, 16616-16620.

14

Kang, S. W.; Kim, K. H.; Chun, D. H.; Yang, J. I.; Lee, H. T.; Jung, H.; Lim, J. T.; Jang, S.; Kim, C. S.; Lee, C. W. et al. High-performance Fe5C2@CMK-3 nanocatalyst for selective and high-yield production of gasoline-range hydrocarbons. J. Catal. 2017, 349, 66-74.

15

Cheng, K.; Ordomsky, V. V.; Virginie, M.; Legras, B.; Chernavskii, P. A.; Kazak, V. O.; Cordier, C.; Paul, S.; Wang, Y.; Khodakov, A. Y. Support effects in high temperature Fischer-Tropsch synthesis on iron catalysts. Appl. Catal. A: Gen. 2014, 488, 66-77.

16

Li, M. M.; Xu, F.; Li, H. R.; Wang, Y. Nitrogen-doped porous carbon materials: Promising catalysts or catalyst supports for heterogeneous hydrogenation and oxidation. Catal. Sci. Technol. 2016, 6, 3670-3693.

17

Cao, Y. L.; Zhao, B. W.; Bao, X. B.; Wang, Y. Fabricating metal@N-doped carbon catalysts via a thermal method. ACS Catal. 2018, 8, 7077-7085.

18

Chen, X. Q.; Deng, D. H.; Pan, X. L.; Hu, Y. F.; Bao, X. H. N-doped graphene as an electron donor of iron catalysts for CO hydrogenation to light olefins. Chem. Commun. 2015, 51, 217-220.

19

Schulte, H. J.; Graf, B.; Xia, W.; Muhler, M. Nitrogen- and oxygen- functionalized multiwalled carbon nanotubes used as support in iron-catalyzed, high-temperature Fischer-Tropsch synthesis. ChemCatChem 2012, 4, 350-355.

20

Liu, G. G.; Chen, Q. J.; Oyunkhand, E.; Ding, S. Y.; Yamane, N.; Yang, G. H.; Yoneyama, Y.; Tsubaki, N. Nitrogen-rich mesoporous carbon supported iron catalyst with superior activity for Fischer-Tropsch synthesis. Carbon 2018, 130, 304-314.

21

Santos, V. P.; Wezendonk, T. A.; Jaén, J. J. D.; Dugulan, A. I.; Nasalevich, M. A.; Islam, H. U.; Chojecki, A.; Sartipi, S.; Sun, X. H.; Hakeem, A. A. et al. Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts. Nat. Commun. 2015, 6, 6451.

22

An, B.; Cheng, K.; Wang, C.; Wang, Y.; Lin, W. B. Pyrolysis of metal- organic frameworks to Fe3O4@Fe5C2 core-shell nanoparticles for Fischer- Tropsch synthesis. ACS Catal. 2016, 6, 3610-3618.

23

Oschatz, M.; Krause, S.; Krans, N. A.; Hernández Mejía, C.; Kaskel, S.; De Jong, K. P. Influence of precursor porosity on sodium and sulfur promoted iron/carbon Fischer-Tropsch catalysts derived from metal-organic framworks. Chem. Commun. 2017, 53, 10204-10207.

24

Yim, S. D.; Kim, S. J.; Baik, J. H.; Nam, I. S.; Mok, Y. S.; Lee, J. H.; Cho, B. K.; Oh, S. H. Decomposition of urea into NH3 for the SCR process. Ind. Eng. Chem. Res. 2004, 43, 4856-4863.

25

Qin, L.; Ding, R. M.; Wang, H. X.; Wu, J. H.; Wang, C. H.; Zhang, C. H.; Xu, Y.; Wang, L. C.; Lv, B. L. Facile synthesis of porous nitrogen-doped holey graphene as an efficient metal-free catalyst for the oxygen reduction reaction. Nano Res. 2017, 10, 305-319.

26

Xiang, C. L.; Lv, T.; Okonkwo, C. A.; Zhang, M.; Jia, L. S.; Xia, W. S. Nitrogen-doped bagasse-derived carbon/low Pt composite as counter electrodes for high efficiency dye-sensitized solar cell. J. Electrochem. Soc. 2017, 164, H203-H210.

27

Xu, K.; Sun, B.; Lin, J.; Wen, W.; Pei, Y.; Yan, S. R.; Qiao, M. H.; Zhang, X. X.; Zong, B. N. ε-Iron carbide as a low-temperature Fischer-Tropsch synthesis catalyst. Nat. Commun. 2014, 5, 5783.

28

Yang, C.; Zhao, H. B.; Hou, Y. L.; Ma, D. Fe5C2 nanoparticles: A facile bromide-induced synthesis and as an active phase for Fischer-Tropsch synthesis. J. Am. Chem. Soc. 2012, 134, 15814-15821.

29

Wezendonk, A. T.; Sun, X. H.; Dugulan, A. I.; Van Hoof, A. J. F.; Hensen, E. J. M.; Kapteijn, F.; Gascon, J. Controlled formation of iron carbides and their performance in Fischer-Tropsch synthesis. J. Catal. 2018, 362, 106-117.

30

De Smit, E.; Weckhuysen, B. M. The renaissance of iron-based Fischer- Tropsch synthesis: On the multifaceted catalyst deactivation behaviour. Chem. Soc. Rev. 2008, 37, 2758-2781.

31

De Smit, E.; Cinquini, F.; Beale, A. M.; Safonova, O. V.; Van Beek, W.; Sautet, P.; Weckhuysen, B. M. Stability and Reactivity of ε-χ-θ iron carbide catalyst phases in Fischer-Tropsch synthesis: Controlling μc. J. Am. Chem. Soc. 2010, 132, 14928-14941.

32

Shi, R. N.; Zhao, J. X.; Liu, S. S.; Sun, W.; Li, H. X.; Hao, P. P.; Li, Z.; Ren, J. Nitrogen-doped graphene supported copper catalysts for methanol oxidative carbonylation: Enhancement of catalytic activity and stability by nitrogen species. Carbon 2018, 130, 185-195.

33

Zhang, Q. H.; Deng, W. P.; Wang, Y. Recent advances in understanding the key catalyst factors for Fischer-Tropsch synthesis. J. Energy Chem. 2013, 22, 27-38.

34

Puskas, I.; Hurlbut, R. S. Comments about the causes of deviations from the Anderson-Schulz-Flory distribution of the Fischer-Tropsch reaction products. Catal. Today 2003, 84, 99-109.

35

Lu, J. Z.; Yang, L. J.; Xu, B. L.; Wu, Q.; Zhang, D.; Yuan, S. J.; Zhai, Y.; Wang, X. Z.; Fan, Y. N.; Hu, Z. Promotion effects of nitrogen doping into carbon nanotubes on supported iron Fischer-Tropsch catalysts for lower olefins. ACS Catal. 2014, 4, 613-621.

Nano Research
Pages 2568-2575
Cite this article:
Lee JH, Lee H-K, Chun DH, et al. Phase-controlled synthesis of thermally stable nitrogen-doped carbon supported iron catalysts for highly efficient Fischer-Tropsch synthesis. Nano Research, 2019, 12(10): 2568-2575. https://doi.org/10.1007/s12274-019-2487-4
Topics:

768

Views

20

Crossref

N/A

Web of Science

22

Scopus

6

CSCD

Altmetrics

Received: 25 April 2019
Revised: 02 July 2019
Accepted: 19 July 2019
Published: 03 August 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return