Graphical Abstract

Hydrogenation of p-nitrophenol (PNP) towards the conversion to p-aminophenol (PAP) by metal catalysis is known as a simple and eco-friendly technique for the production of corresponding industrial and pharmaceutical intermediates. While continuous efforts are paid for more sustainable and greener procedures by using transition metal catalysts, atomic-precise reaction mechanism for the PNP-to-PAP is still illusive to be fully understood. Utilizing a dry-wet combined strategy, here we have synthesized water-soluble Pd8 nanoclusters (NCs) with mercaptosuccinic acid (H2SMA) as the ligand, and the Pd8 NCs found high catalytic performance for the conversion of PNP-to-PAP, as identified by the electrospray ionization mass spectrometer (ESI-MS) measurement. The gradual changes over time of ultraviolet-visible (UV-vis) spectra of PNP really display the catalytic reduction by NaBH4 in presence of Pd8 NCs. Further, in-depth charge transfer interactions between PNP and the Pd8 clusters at the proton-rich conditions are investigated by natural bond orbital (NBO) analysis and electron density difference (EDD) analysis. The exothermic and kinetic-favorable reaction pathways are addressed, based on successive PNP hydrogenation and H2O removal processes, clarifying the reaction mechanism of Pd catalysts. It is worth noting that this solid-state synthetic route for such Pd8 clusters enables gram-scale quantity of production in likely practical use.
Komatsu, T.; Hirose, T. Gas phase synthesis of para-aminophenol from nitrobenzene on Pt/zeolite catalysts. Appl. Catal. A Gen. 2004, 276, 95-102.
Rode, C. V.; Vaidya, M. J.; Jaganathan, R.; Chaudhari, R. V. Hydrogenation of nitrobenzene to p-aminophenol in a four-phase reactor: Reaction kinetics and mass transfer effects. Chem. Eng. Sci. 2001, 56, 1299-1304.
Jagadeesh, R. V.; Banerjee, D.; Arockiam, P. B.; Junge, H.; Junge, K.; Pohl, M. M.; Radnik, J.; Brückner, A.; Beller, M. Highly selective transfer hydrogenation of functionalised nitroarenes using cobalt-based nanocatalysts. Green Chem. 2015, 17, 898-902.
McCormick, N. G.; Feeherry, F. E.; Levinson, H. S. Microbial transformation of 2, 4, 6-trinitrotoluene and other nitroaromatic compounds. Appl. Environ. Microbiol. 1976, 31, 949-958.
Oturan, M. A.; Peiroten, J.; Chartrin, P.; Acher, A. J. Complete destruction of p-nitrophenol in aqueous medium by electro-fenton method. Environ. Sci. Technol. 2000, 34, 3474-3479.
Chua, C. K.; Pumera, M.; Rulíšek, L. Reduction pathways of 2, 4, 6- trinitrotoluene: An electrochemical and theoretical study. J. Phys. Chem. C 2012, 116, 4243-4251.
Lee, J.; Park, J. C.; Song, H. A nanoreactor framework of a Au@SiO2 yolk/shell structure for catalytic reduction of p-nitrophenol. Adv. Mater. 2008, 20, 1523-1528.
Li, Y. Z.; Cao, Y. L.; Xie, J.; Jia, D. Z.; Qin, H. Y.; Liang, Z. T. Facile solid-state synthesis of Ag/graphene oxide nanocomposites as highly active and stable catalyst for the reduction of 4-nitrophenol. Catal. Commun. 2015, 58, 21-25.
Polášek, M.; Tureček, F. Hydrogen atom adducts to nitrobenzene: Formation of the phenylnitronic radical in the gas phase and energetics of wheland intermediates. J. Am. Chem. Soc. 2000, 122, 9511-9524.
Vaidya, M. J.; Kulkarni, S. M.; Chaudhari, R. V. Synthesis of p-aminophenol by catalytic hydrogenation of p-nitrophenol. Org. Process Res. Dev. 2003, 7, 202-208.
Wang, M. L.; Jiang, T. T.; Lu, Y.; Liu, H. J.; Chen, Y. Gold nanoparticles immobilized in hyperbranched polyethylenimine modified polyacrylonitrile fiber as highly efficient and recyclable heterogeneous catalysts for the reduction of 4-nitrophenol. J. Mater. Chem. A 2013, 1, 5923-5933.
Zhang, D. H.; Chen, L.; Ge, G. L. A green approach for efficient p-nitrophenol hydrogenation catalyzed by a Pd-based nanocatalyst. Catal. Commun. 2015, 66, 95-99.
Aditya, T.; Pal, A.; Pal, T. Nitroarene reduction: A trusted model reaction to test nanoparticle catalysts. Chem. Commun. 2015, 51, 9410-9431.
Boronat, M.; Concepción, P.; Corma, A.; González, S.; Illas, F.; Serna, P. A molecular mechanism for the chemoselective hydrogenation of substituted nitroaromatics with nanoparticles of gold on TiO2 catalysts: A cooperative effect between gold and the support. J. Am. Chem. Soc. 2007, 129, 16230-16237.
Chappa, S.; Bharath, R. S.; Oommen, C.; Pandey, A. K. Dual-functional grafted electrospun polymer microfiber scaffold hosted palladium nanoparticles for catalyzing redox reactions. Macromol. Chem. Phys. 2017, 218, 1600555.
Corma, A.; Concepción, P.; Serna, P. A different reaction pathway for the reduction of aromatic nitro compounds on gold catalysts. Angew. Chem., Int. Ed. 2007, 46, 7266-7269.
Gangula, A.; Podila, R.; Ramakrishna, M.; Karanam, L.; Janardhana, C.; Rao, A. M. Catalytic reduction of 4-nitrophenol using biogenic gold and silver nanoparticles derived from Breynia rhamnoides. Langmuir 2011, 27, 15268-15274.
Imura, Y.; Tsujimoto, K.; Morita, C.; Kawai, T. Preparation and catalytic activity of Pd and bimetallic Pd-Ni nanowires. Langmuir 2014, 30, 5026-5030.
Li, J.; Liu, C. Y.; Liu, Y. Au/graphene hydrogel: Synthesis, characterization and its use for catalytic reduction of 4-nitrophenol. J. Mater. Chem. 2012, 22, 8426-8430.
Lin, F. H.; Doong, R. A. Bifunctional Au-Fe3O4 heterostructures for magnetically recyclable catalysis of nitrophenol reduction. J. Phys. Chem. C 2011, 115, 6591-6598.
Lin, F. H.; Doong, R. A. Highly efficient reduction of 4-nitrophenol by heterostructured gold-magnetite nanocatalysts. Appl. Catal. A Gen. 2014, 486, 32-41.
Lu, X. F.; Bian, X. J.; Nie, G. D.; Zhang, C. C.; Wang, C.; Wei, Y. Encapsulating conducting polypyrrole into electrospun TiO2 nanofibers: A new kind of nanoreactor for in situ loading Pd nanocatalysts towards p-nitrophenol hydrogenation. J. Mater. Chem. 2012, 22, 12723-12730.
Nie, R. F.; Wang, J. H.; Wang, L. N.; Qin, Y.; Chen, P.; Hou, Z. Y. Platinum supported on reduced graphene oxide as a catalyst for hydrogenation of nitroarenes. Carbon 2012, 50, 586-596.
Pozun, Z. D.; Rodenbusch, S. E.; Keller, E.; Tran, K.; Tang, W. J.; Stevenson, K. J.; Henkelman, G. A systematic investigation of p-nitrophenol reduction by bimetallic dendrimer encapsulated nanoparticles. J. Phys. Chem. C 2013, 117, 7598-7604.
Wang, D.; Sun, Y. M.; Sun, Y. H.; Huang, J.; Liang, Z. Q.; Li, S. Z.; Jiang, L. Morphological effects on the selectivity of intramolecular versus intermolecular catalytic reaction on Au nanoparticles. Nanoscale 2017, 9, 7727-7733.
Wunder, S.; Polzer, F.; Lu, Y.; Mei, Y.; Ballauff, M. Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes. J. Phys. Chem. C 2010, 114, 8814-8820.
Zhang, L. Y.; Jiang, J. H.; Shi, W.; Xia, S. J.; Ni, Z. M.; Xiao, X. C. Insights into the hydrogenation mechanism of nitrobenzene to aniline on Pd3/Pt(111): A density functional theory study. RSC Adv. 2015, 5, 34319-34326.
Qi, H. T.; Yu, P.; Wang, Y. X.; Han, G. C.; Liu, H. B.; Yi, Y. P.; Li, Y. L.; Mao, L. Q. Graphdiyne oxides as excellent substrate for electroless deposition of Pd clusters with high catalytic activity. J. Am. Chem. Soc. 2015, 137, 5260-5263.
Li, G.; Jin, R. C. Atomically precise gold nanoclusters as new model catalysts. Acc. Chem. Res. 2013, 46, 1749-1758.
Turner, M.; Golovko, V. B.; Vaughan, O. P. H.; Abdulkin, P.; Berenguer- Murcia, A.; Tikhov, M. S.; Johnson, B. F. G.; Lambert, R. M. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 2008, 454, 981-983.
Vajda, S.; Pellin, M. J.; Greeley, J. P.; Marshall, C. L.; Curtiss, L. A.; Ballentine, G. A.; Elam, J. W.; Catillon-Mucherie, S.; Redfern, P. C.; Mehmood, F. et al. Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. Nat. Mater. 2009, 8, 213-216.
Wang, Y.; Wan, X. K.; Ren, L. T.; Su, H. F.; Li, G.; Malola, S.; Lin, S. C.; Tang, Z. C.; Häkkinen, H.; Teo, B. K. et al. Atomically precise alkynyl- protected metal nanoclusters as a model catalyst: Observation of promoting effect of surface ligands on catalysis by metal nanoparticles. J. Am. Chem. Soc. 2016, 138, 3278-3281.
Daniel, M. C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293-346.
Gross, E.; Somorjai, G. A. Mesoscale nanostructures as a bridge between homogeneous and heterogeneous catalysis. Top. Catal. 2014, 57, 812-821.
Rao, T. U. B.; Nataraju, B.; Pradeep, T. Ag9 quantum cluster through a solid-state route. J. Am. Chem. Soc. 2010, 132, 16304-16307.
Chen, J. S.; Liu, L. R.; Weng, L. H.; Lin, Y. J.; Liao, L. W.; Wang, C. M.; Yang, J. L.; Wu, Z. K. Synthesis and properties evolution of a family of tiara-like phenylethanethiolated palladium nanoclusters. Sci. Rep. 2015, 5, 16628.
An, P.; Anumula, R.; Wu, H. M.; Han, J. J.; Luo, Z. X. Charge transfer interactions of pyrazine with Ag12 clusters towards precise SERS chemical mechanism. Nanoscale 2018, 10, 16787-16794.
Liu, X. H.; Ding, W. H.; Wu, Y. S.; Zeng, C. H.; Luo, Z. X.; Fu, H. B. Penicillamine-protected Ag20 nanoclusters and fluorescence chemosensing for trace detection of copper ions. Nanoscale 2017, 9, 3986-3994.
Kalita, B.; Deka, R. C. Stability of small Pdn (n = 1-7) clusters on the basis of structural and electronic properties: A density functional approach. J. Chem. Phys. 2007, 127, 244306.
Wen, J. Q.; Jiang, Z. Y.; Li, J. Q.; Cao, L. K.; Chu, S. Y. Geometrical structures, electronic states, and stability of NinAl clusters. Int. J. Quantum Chem. 2010, 110, 1368-1375.
Lu, T.; Chen, F. W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580-592.
Xiao, M.; Lu, T. Generalized charge decomposition analysis (GCDA) method. J. Adv. Phys. Chem. 2015, 4, 111-124.
Rehr, J. J.; Kas, J. J.; Vila, F. D.; Prange, M. P.; Jorissen, K. Parameter-free calculations of X-ray spectra with FEFF9. Phys. Chem. Chem. Phys. 2010, 12, 5503-5513.
Udayabhaskararao, T.; Bootharaju, M. S.; Pradeep, T. Thiolate-protected Ag32 clusters: Mass spectral studies of composition and insights into the Ag-thiolate structure from NMR. Nanoscale 2013, 5, 9404-9411.
Wu, Z. K.; Lanni, E.; Chen, W. Q.; Bier, M. E.; Ly, D.; Jin, R. C. High yield, large scale synthesis of thiolate-protected Ag7 clusters. J. Am. Chem. Soc. 2009, 131, 16672-16674.
Rao, T. U. B.; Pradeep, T. Luminescent Ag7 and Ag8 clusters by interfacial synthesis. Angew. Chem., Int. Ed. 2010, 49, 3925-3929.
Wang, C.; Zhou, Y.; Ge, M. Y.; Xu, X. B.; Zhang, Z. L.; Jiang, J. Z. Large-scale synthesis of SnO2 nanosheets with high lithium storage capacity. J. Am. Chem. Soc. 2010, 132, 46-47.
Ramasamy, P.; Guha, S.; Shibu, E. S.; Sreeprasad, T. S.; Bag, S.; Banerjee, A.; Pradeep, T. Size tuning of Au nanoparticles formed by electron beam irradiation of Au25 quantum clusters anchored within and outside of dipeptide nanotubes. J. Mater. Chem. 2009, 19, 8456-8462.
Huang, X. Q.; Tang, S. H.; Mu, X. L.; Dai, Y.; Chen, G. X.; Zhou, Z. Y.; Ruan, F. X.; Yang, Z. L.; Zheng, N. F. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 2010, 6, 28-32.
Ding, W. H.; Huang, S. P.; Guan, L. M.; Liu, X. H.; Luo, Z. X. Furthering the chemosensing of silver nanoclusters for ion detection. RSC Adv. 2015, 5, 64138-64145.
Max, J. J.; Chapados, C. Infrared spectroscopy of aqueous carboxylic acids: Comparison between different acids and their salts. J. Phys. Chem. A 2004, 108, 3324-3337.
Bootharaju, M. S.; Pradeep, T. Facile and rapid synthesis of a dithiol-protected Ag7 quantum cluster for selective adsorption of cationic dyes. Langmuir 2013, 29, 8125-8132.
Mouat, A. R.; Whitford, C. L.; Chen, B. R.; Liu, S. S.; Perras, F. A.; Pruski, M.; Bedzyk, M. J.; Delferro, M.; Stair, P. C.; Marks, T. J. Synthesis of supported Pd0 nanoparticles from a single-site Pd2+ surface complex by alkene reduction. Chem. Mater. 2018, 30, 1032-1044.
Mao, B. H.; Chang, R.; Lee, S.; Axnanda, S.; Crumlin, E.; Grass, M. E.; Wang, S. D.; Vajda, S.; Liu, Z. Oxidation and reduction of size-selected subnanometer Pd clusters on Al2O3 surface. J. Chem. Phys. 2013, 138, 214304.
Mao, B. H.; Liu, C. H.; Gao, X.; Chang, R.; Liu, Z.; Wang, S. D. In situ characterization of catalytic activity of graphene stabilized small-sized Pd nanoparticles for CO oxidation. Appl. Surf. Sci. 2013, 283, 1076-1079.
Kaden, W. E.; Kunkel, W. A.; Roberts, F. S.; Kane, M.; Anderson, S. L. CO adsorption and desorption on size-selected Pdn/TiO2(110) model catalysts: Size dependence of binding sites and energies, and support-mediated adsorption. J. Chem. Phys. 2012, 136, 204705.
Kaden, W. E.; Wu, T. P.; Kunkel, W. A.; Anderson, S. L. Electronic structure controls reactivity of size-selected Pd clusters adsorbed on TiO2 surfaces. Science 2009, 326, 826-829.
Wu, T. P.; Kaden, W. E.; Kunkel, W. A.; Anderson, S. L. Size-dependent oxidation of Pdn (n ≤ 13) on alumina/NiAl(110): Correlation with Pd core level binding energies. Surf. Sci. 2009, 603, 2764-2770.
Chen, X. M.; Cai, Z. X.; Chen, X.; Oyama, M. AuPd bimetallic nanoparticles decorated on graphene nanosheets: Their green synthesis, growth mechanism and high catalytic ability in 4-nitrophenol reduction. J. Mater. Chem. A 2014, 2, 5668-5674.
Chen, L.; Gao, Y.; Cheng, Y. K.; Li, H. C.; Wang, Z. G.; Li, Z. Q.; Zhang, R. Q. Nonresonant chemical mechanism in surface-enhanced Raman scattering of pyridine on M@Au12 clusters. Nanoscale 2016, 8, 4086-4093.
Zhao, L. L.; Jensen, L.; Schatz, G. C. Pyridine-Ag20 cluster: A model system for studying surface-enhanced Raman scattering. J. Am. Chem. Soc. 2006, 128, 2911-2919.
Chen, J.; Luo, Z. X.; Yao, J. N. How active sites facilitate charge-transfer interactions of silver and gold clusters with TCNQ? Phys. Chem. Chem. Phys. 2017, 19, 21777-21782.
Glendening, E. D.; Landis, C. R.; Weinhold, F. Natural bond orbital methods. WIREs Comput. Mol. Sci. 2012, 2, 1-42.
Bae, S.; Gim, S.; Kim, H.; Dorcet, V.; Pasturel, M.; Grenèche, J. M.; Darbha, G. K.; Hanna, K. New features and uncovered benefits of polycrystalline magnetite as reusable catalyst in reductive chemical conversion. J. Phys. Chem. C 2017, 121, 25195-25205.
Bae, S.; Gim, S.; Kim, H.; Hanna, K. Effect of NaBH4 on properties of nanoscale zero-valent iron and its catalytic activity for reduction of p-nitrophenol. Appl. Catal. B Environ. 2016, 182, 541-549.
Wang, S. W.; Weinberg, W. H. Hydrogen chemisorption on metal surfaces. Surf. Sci. 1978, 77, 14-28.
Lyu, J. H.; Wang, J. G.; Lu, C. S.; Ma, L.; Zhang, Q. F.; He, X. B.; Li, X. N. Size-dependent halogenated nitrobenzene hydrogenation selectivity of Pd nanoparticles. J. Phys. Chem. C 2014, 118, 2594-2601.
Mortensen, J. J.; Ganduglia-Pirovano, M. V.; Hansen, L. B.; Hammer, B.; Stoltze, P.; Nørskov, J. K. Nitrogen adsorption on Fe(111), (100), and (110) surfaces. Surf. Sci. 1999, 422, 8-16.
Zhou, S. Q.; Li, D. H.; Zhao, F. Q.; Ju, X. H. A DFT study of adsorption and decomposition of nitroamine molecule on Mg(001) surface. Struct. Chem. 2014, 25, 409-417.