Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

A facile method to synthesize water-soluble Pd8 nanoclusters unraveling the catalytic mechanism of p-nitrophenol to p-aminophenol

Pan An1,2Rajini Anumula1Chaonan Cui1Yang Liu1Fei Zhan3Ye Tao3Zhixun Luo1,2()
Beijing National Laboratory for Molecular Sciences (BNLMS) and State Key Laboratory for Structural Chemistry of Unstable and Stable Species,Institute of Chemistry, Chinese Academy of Sciences,Beijing,100190,China;
University of Chinese Academy of Sciences (UCAS),Beijing,100049,China;
Beijing Synchrotron Radiation Facility,Institute of High Energy Physics, Chinese Academy of Sciences,Beijing,100049,China;
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Hydrogenation of p-nitrophenol (PNP) towards the conversion to p-aminophenol (PAP) by metal catalysis is known as a simple and eco-friendly technique for the production of corresponding industrial and pharmaceutical intermediates. While continuous efforts are paid for more sustainable and greener procedures by using transition metal catalysts, atomic-precise reaction mechanism for the PNP-to-PAP is still illusive to be fully understood. Utilizing a dry-wet combined strategy, here we have synthesized water-soluble Pd8 nanoclusters (NCs) with mercaptosuccinic acid (H2SMA) as the ligand, and the Pd8 NCs found high catalytic performance for the conversion of PNP-to-PAP, as identified by the electrospray ionization mass spectrometer (ESI-MS) measurement. The gradual changes over time of ultraviolet-visible (UV-vis) spectra of PNP really display the catalytic reduction by NaBH4 in presence of Pd8 NCs. Further, in-depth charge transfer interactions between PNP and the Pd8 clusters at the proton-rich conditions are investigated by natural bond orbital (NBO) analysis and electron density difference (EDD) analysis. The exothermic and kinetic-favorable reaction pathways are addressed, based on successive PNP hydrogenation and H2O removal processes, clarifying the reaction mechanism of Pd catalysts. It is worth noting that this solid-state synthetic route for such Pd8 clusters enables gram-scale quantity of production in likely practical use.

Electronic Supplementary Material

Download File(s)
12274_2019_2491_MOESM1_ESM.pdf (2.3 MB)

References

1

Komatsu, T.; Hirose, T. Gas phase synthesis of para-aminophenol from nitrobenzene on Pt/zeolite catalysts. Appl. Catal. A Gen. 2004, 276, 95-102.

2

Rode, C. V.; Vaidya, M. J.; Jaganathan, R.; Chaudhari, R. V. Hydrogenation of nitrobenzene to p-aminophenol in a four-phase reactor: Reaction kinetics and mass transfer effects. Chem. Eng. Sci. 2001, 56, 1299-1304.

3

Jagadeesh, R. V.; Banerjee, D.; Arockiam, P. B.; Junge, H.; Junge, K.; Pohl, M. M.; Radnik, J.; Brückner, A.; Beller, M. Highly selective transfer hydrogenation of functionalised nitroarenes using cobalt-based nanocatalysts. Green Chem. 2015, 17, 898-902.

4

McCormick, N. G.; Feeherry, F. E.; Levinson, H. S. Microbial transformation of 2, 4, 6-trinitrotoluene and other nitroaromatic compounds. Appl. Environ. Microbiol. 1976, 31, 949-958.

5

Oturan, M. A.; Peiroten, J.; Chartrin, P.; Acher, A. J. Complete destruction of p-nitrophenol in aqueous medium by electro-fenton method. Environ. Sci. Technol. 2000, 34, 3474-3479.

6

Chua, C. K.; Pumera, M.; Rulíšek, L. Reduction pathways of 2, 4, 6- trinitrotoluene: An electrochemical and theoretical study. J. Phys. Chem. C 2012, 116, 4243-4251.

7

Lee, J.; Park, J. C.; Song, H. A nanoreactor framework of a Au@SiO2 yolk/shell structure for catalytic reduction of p-nitrophenol. Adv. Mater. 2008, 20, 1523-1528.

8

Li, Y. Z.; Cao, Y. L.; Xie, J.; Jia, D. Z.; Qin, H. Y.; Liang, Z. T. Facile solid-state synthesis of Ag/graphene oxide nanocomposites as highly active and stable catalyst for the reduction of 4-nitrophenol. Catal. Commun. 2015, 58, 21-25.

9

Polášek, M.; Tureček, F. Hydrogen atom adducts to nitrobenzene:  Formation of the phenylnitronic radical in the gas phase and energetics of wheland intermediates. J. Am. Chem. Soc. 2000, 122, 9511-9524.

10

Vaidya, M. J.; Kulkarni, S. M.; Chaudhari, R. V. Synthesis of p-aminophenol by catalytic hydrogenation of p-nitrophenol. Org. Process Res. Dev. 2003, 7, 202-208.

11

Wang, M. L.; Jiang, T. T.; Lu, Y.; Liu, H. J.; Chen, Y. Gold nanoparticles immobilized in hyperbranched polyethylenimine modified polyacrylonitrile fiber as highly efficient and recyclable heterogeneous catalysts for the reduction of 4-nitrophenol. J. Mater. Chem. A 2013, 1, 5923-5933.

12

Zhang, D. H.; Chen, L.; Ge, G. L. A green approach for efficient p-nitrophenol hydrogenation catalyzed by a Pd-based nanocatalyst. Catal. Commun. 2015, 66, 95-99.

13

Aditya, T.; Pal, A.; Pal, T. Nitroarene reduction: A trusted model reaction to test nanoparticle catalysts. Chem. Commun. 2015, 51, 9410-9431.

14

Boronat, M.; Concepción, P.; Corma, A.; González, S.; Illas, F.; Serna, P. A molecular mechanism for the chemoselective hydrogenation of substituted nitroaromatics with nanoparticles of gold on TiO2 catalysts: A cooperative effect between gold and the support. J. Am. Chem. Soc. 2007, 129, 16230-16237.

15

Chappa, S.; Bharath, R. S.; Oommen, C.; Pandey, A. K. Dual-functional grafted electrospun polymer microfiber scaffold hosted palladium nanoparticles for catalyzing redox reactions. Macromol. Chem. Phys. 2017, 218, 1600555.

16

Corma, A.; Concepción, P.; Serna, P. A different reaction pathway for the reduction of aromatic nitro compounds on gold catalysts. Angew. Chem., Int. Ed. 2007, 46, 7266-7269.

17

Gangula, A.; Podila, R.; Ramakrishna, M.; Karanam, L.; Janardhana, C.; Rao, A. M. Catalytic reduction of 4-nitrophenol using biogenic gold and silver nanoparticles derived from Breynia rhamnoides. Langmuir 2011, 27, 15268-15274.

18

Imura, Y.; Tsujimoto, K.; Morita, C.; Kawai, T. Preparation and catalytic activity of Pd and bimetallic Pd-Ni nanowires. Langmuir 2014, 30, 5026-5030.

19

Li, J.; Liu, C. Y.; Liu, Y. Au/graphene hydrogel: Synthesis, characterization and its use for catalytic reduction of 4-nitrophenol. J. Mater. Chem. 2012, 22, 8426-8430.

20

Lin, F. H.; Doong, R. A. Bifunctional Au-Fe3O4 heterostructures for magnetically recyclable catalysis of nitrophenol reduction. J. Phys. Chem. C 2011, 115, 6591-6598.

21

Lin, F. H.; Doong, R. A. Highly efficient reduction of 4-nitrophenol by heterostructured gold-magnetite nanocatalysts. Appl. Catal. A Gen. 2014, 486, 32-41.

22

Lu, X. F.; Bian, X. J.; Nie, G. D.; Zhang, C. C.; Wang, C.; Wei, Y. Encapsulating conducting polypyrrole into electrospun TiO2 nanofibers: A new kind of nanoreactor for in situ loading Pd nanocatalysts towards p-nitrophenol hydrogenation. J. Mater. Chem. 2012, 22, 12723-12730.

23

Nie, R. F.; Wang, J. H.; Wang, L. N.; Qin, Y.; Chen, P.; Hou, Z. Y. Platinum supported on reduced graphene oxide as a catalyst for hydrogenation of nitroarenes. Carbon 2012, 50, 586-596.

24

Pozun, Z. D.; Rodenbusch, S. E.; Keller, E.; Tran, K.; Tang, W. J.; Stevenson, K. J.; Henkelman, G. A systematic investigation of p-nitrophenol reduction by bimetallic dendrimer encapsulated nanoparticles. J. Phys. Chem. C 2013, 117, 7598-7604.

25

Wang, D.; Sun, Y. M.; Sun, Y. H.; Huang, J.; Liang, Z. Q.; Li, S. Z.; Jiang, L. Morphological effects on the selectivity of intramolecular versus intermolecular catalytic reaction on Au nanoparticles. Nanoscale 2017, 9, 7727-7733.

26

Wunder, S.; Polzer, F.; Lu, Y.; Mei, Y.; Ballauff, M. Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes. J. Phys. Chem. C 2010, 114, 8814-8820.

27

Zhang, L. Y.; Jiang, J. H.; Shi, W.; Xia, S. J.; Ni, Z. M.; Xiao, X. C. Insights into the hydrogenation mechanism of nitrobenzene to aniline on Pd3/Pt(111): A density functional theory study. RSC Adv. 2015, 5, 34319-34326.

28

Qi, H. T.; Yu, P.; Wang, Y. X.; Han, G. C.; Liu, H. B.; Yi, Y. P.; Li, Y. L.; Mao, L. Q. Graphdiyne oxides as excellent substrate for electroless deposition of Pd clusters with high catalytic activity. J. Am. Chem. Soc. 2015, 137, 5260-5263.

29

Li, G.; Jin, R. C. Atomically precise gold nanoclusters as new model catalysts. Acc. Chem. Res. 2013, 46, 1749-1758.

30

Turner, M.; Golovko, V. B.; Vaughan, O. P. H.; Abdulkin, P.; Berenguer- Murcia, A.; Tikhov, M. S.; Johnson, B. F. G.; Lambert, R. M. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 2008, 454, 981-983.

31

Vajda, S.; Pellin, M. J.; Greeley, J. P.; Marshall, C. L.; Curtiss, L. A.; Ballentine, G. A.; Elam, J. W.; Catillon-Mucherie, S.; Redfern, P. C.; Mehmood, F. et al. Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. Nat. Mater. 2009, 8, 213-216.

32

Wang, Y.; Wan, X. K.; Ren, L. T.; Su, H. F.; Li, G.; Malola, S.; Lin, S. C.; Tang, Z. C.; Häkkinen, H.; Teo, B. K. et al. Atomically precise alkynyl- protected metal nanoclusters as a model catalyst: Observation of promoting effect of surface ligands on catalysis by metal nanoparticles. J. Am. Chem. Soc. 2016, 138, 3278-3281.

33

Daniel, M. C.; Astruc, D. Gold nanoparticles:  Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293-346.

34

Gross, E.; Somorjai, G. A. Mesoscale nanostructures as a bridge between homogeneous and heterogeneous catalysis. Top. Catal. 2014, 57, 812-821.

35

Rao, T. U. B.; Nataraju, B.; Pradeep, T. Ag9 quantum cluster through a solid-state route. J. Am. Chem. Soc. 2010, 132, 16304-16307.

36

Chen, J. S.; Liu, L. R.; Weng, L. H.; Lin, Y. J.; Liao, L. W.; Wang, C. M.; Yang, J. L.; Wu, Z. K. Synthesis and properties evolution of a family of tiara-like phenylethanethiolated palladium nanoclusters. Sci. Rep. 2015, 5, 16628.

37

An, P.; Anumula, R.; Wu, H. M.; Han, J. J.; Luo, Z. X. Charge transfer interactions of pyrazine with Ag12 clusters towards precise SERS chemical mechanism. Nanoscale 2018, 10, 16787-16794.

38

Liu, X. H.; Ding, W. H.; Wu, Y. S.; Zeng, C. H.; Luo, Z. X.; Fu, H. B. Penicillamine-protected Ag20 nanoclusters and fluorescence chemosensing for trace detection of copper ions. Nanoscale 2017, 9, 3986-3994.

39

Kalita, B.; Deka, R. C. Stability of small Pdn (n = 1-7) clusters on the basis of structural and electronic properties: A density functional approach. J. Chem. Phys. 2007, 127, 244306.

40

Wen, J. Q.; Jiang, Z. Y.; Li, J. Q.; Cao, L. K.; Chu, S. Y. Geometrical structures, electronic states, and stability of NinAl clusters. Int. J. Quantum Chem. 2010, 110, 1368-1375.

41

Lu, T.; Chen, F. W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580-592.

42

Xiao, M.; Lu, T. Generalized charge decomposition analysis (GCDA) method. J. Adv. Phys. Chem. 2015, 4, 111-124.

43

Rehr, J. J.; Kas, J. J.; Vila, F. D.; Prange, M. P.; Jorissen, K. Parameter-free calculations of X-ray spectra with FEFF9. Phys. Chem. Chem. Phys. 2010, 12, 5503-5513.

44

Udayabhaskararao, T.; Bootharaju, M. S.; Pradeep, T. Thiolate-protected Ag32 clusters: Mass spectral studies of composition and insights into the Ag-thiolate structure from NMR. Nanoscale 2013, 5, 9404-9411.

45

Wu, Z. K.; Lanni, E.; Chen, W. Q.; Bier, M. E.; Ly, D.; Jin, R. C. High yield, large scale synthesis of thiolate-protected Ag7 clusters. J. Am. Chem. Soc. 2009, 131, 16672-16674.

46

Rao, T. U. B.; Pradeep, T. Luminescent Ag7 and Ag8 clusters by interfacial synthesis. Angew. Chem., Int. Ed. 2010, 49, 3925-3929.

47

Wang, C.; Zhou, Y.; Ge, M. Y.; Xu, X. B.; Zhang, Z. L.; Jiang, J. Z. Large-scale synthesis of SnO2 nanosheets with high lithium storage capacity. J. Am. Chem. Soc. 2010, 132, 46-47.

48

Ramasamy, P.; Guha, S.; Shibu, E. S.; Sreeprasad, T. S.; Bag, S.; Banerjee, A.; Pradeep, T. Size tuning of Au nanoparticles formed by electron beam irradiation of Au25 quantum clusters anchored within and outside of dipeptide nanotubes. J. Mater. Chem. 2009, 19, 8456-8462.

49

Huang, X. Q.; Tang, S. H.; Mu, X. L.; Dai, Y.; Chen, G. X.; Zhou, Z. Y.; Ruan, F. X.; Yang, Z. L.; Zheng, N. F. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 2010, 6, 28-32.

50

Ding, W. H.; Huang, S. P.; Guan, L. M.; Liu, X. H.; Luo, Z. X. Furthering the chemosensing of silver nanoclusters for ion detection. RSC Adv. 2015, 5, 64138-64145.

51

Max, J. J.; Chapados, C. Infrared spectroscopy of aqueous carboxylic acids: Comparison between different acids and their salts. J. Phys. Chem. A 2004, 108, 3324-3337.

52

Bootharaju, M. S.; Pradeep, T. Facile and rapid synthesis of a dithiol-protected Ag7 quantum cluster for selective adsorption of cationic dyes. Langmuir 2013, 29, 8125-8132.

53

Mouat, A. R.; Whitford, C. L.; Chen, B. R.; Liu, S. S.; Perras, F. A.; Pruski, M.; Bedzyk, M. J.; Delferro, M.; Stair, P. C.; Marks, T. J. Synthesis of supported Pd0 nanoparticles from a single-site Pd2+ surface complex by alkene reduction. Chem. Mater. 2018, 30, 1032-1044.

54

Mao, B. H.; Chang, R.; Lee, S.; Axnanda, S.; Crumlin, E.; Grass, M. E.; Wang, S. D.; Vajda, S.; Liu, Z. Oxidation and reduction of size-selected subnanometer Pd clusters on Al2O3 surface. J. Chem. Phys. 2013, 138, 214304.

55

Mao, B. H.; Liu, C. H.; Gao, X.; Chang, R.; Liu, Z.; Wang, S. D. In situ characterization of catalytic activity of graphene stabilized small-sized Pd nanoparticles for CO oxidation. Appl. Surf. Sci. 2013, 283, 1076-1079.

56

Kaden, W. E.; Kunkel, W. A.; Roberts, F. S.; Kane, M.; Anderson, S. L. CO adsorption and desorption on size-selected Pdn/TiO2(110) model catalysts: Size dependence of binding sites and energies, and support-mediated adsorption. J. Chem. Phys. 2012, 136, 204705.

57

Kaden, W. E.; Wu, T. P.; Kunkel, W. A.; Anderson, S. L. Electronic structure controls reactivity of size-selected Pd clusters adsorbed on TiO2 surfaces. Science 2009, 326, 826-829.

58

Wu, T. P.; Kaden, W. E.; Kunkel, W. A.; Anderson, S. L. Size-dependent oxidation of Pdn (n ≤ 13) on alumina/NiAl(110): Correlation with Pd core level binding energies. Surf. Sci. 2009, 603, 2764-2770.

59

Chen, X. M.; Cai, Z. X.; Chen, X.; Oyama, M. AuPd bimetallic nanoparticles decorated on graphene nanosheets: Their green synthesis, growth mechanism and high catalytic ability in 4-nitrophenol reduction. J. Mater. Chem. A 2014, 2, 5668-5674.

60

Chen, L.; Gao, Y.; Cheng, Y. K.; Li, H. C.; Wang, Z. G.; Li, Z. Q.; Zhang, R. Q. Nonresonant chemical mechanism in surface-enhanced Raman scattering of pyridine on M@Au12 clusters. Nanoscale 2016, 8, 4086-4093.

61

Zhao, L. L.; Jensen, L.; Schatz, G. C. Pyridine-Ag20 cluster:  A model system for studying surface-enhanced Raman scattering. J. Am. Chem. Soc. 2006, 128, 2911-2919.

62

Chen, J.; Luo, Z. X.; Yao, J. N. How active sites facilitate charge-transfer interactions of silver and gold clusters with TCNQ? Phys. Chem. Chem. Phys. 2017, 19, 21777-21782.

63

Glendening, E. D.; Landis, C. R.; Weinhold, F. Natural bond orbital methods. WIREs Comput. Mol. Sci. 2012, 2, 1-42.

64

Bae, S.; Gim, S.; Kim, H.; Dorcet, V.; Pasturel, M.; Grenèche, J. M.; Darbha, G. K.; Hanna, K. New features and uncovered benefits of polycrystalline magnetite as reusable catalyst in reductive chemical conversion. J. Phys. Chem. C 2017, 121, 25195-25205.

65

Bae, S.; Gim, S.; Kim, H.; Hanna, K. Effect of NaBH4 on properties of nanoscale zero-valent iron and its catalytic activity for reduction of p-nitrophenol. Appl. Catal. B Environ. 2016, 182, 541-549.

66

Wang, S. W.; Weinberg, W. H. Hydrogen chemisorption on metal surfaces. Surf. Sci. 1978, 77, 14-28.

67

Lyu, J. H.; Wang, J. G.; Lu, C. S.; Ma, L.; Zhang, Q. F.; He, X. B.; Li, X. N. Size-dependent halogenated nitrobenzene hydrogenation selectivity of Pd nanoparticles. J. Phys. Chem. C 2014, 118, 2594-2601.

68

Mortensen, J. J.; Ganduglia-Pirovano, M. V.; Hansen, L. B.; Hammer, B.; Stoltze, P.; Nørskov, J. K. Nitrogen adsorption on Fe(111), (100), and (110) surfaces. Surf. Sci. 1999, 422, 8-16.

69

Zhou, S. Q.; Li, D. H.; Zhao, F. Q.; Ju, X. H. A DFT study of adsorption and decomposition of nitroamine molecule on Mg(001) surface. Struct. Chem. 2014, 25, 409-417.

Nano Research
Pages 2589-2596
Cite this article:
An P, Anumula R, Cui C, et al. A facile method to synthesize water-soluble Pd8 nanoclusters unraveling the catalytic mechanism of p-nitrophenol to p-aminophenol. Nano Research, 2019, 12(10): 2589-2596. https://doi.org/10.1007/s12274-019-2491-8
Topics:
Metrics & Citations  
Article History
Copyright
Return