AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Multifunctional core-shell-like nanoarchitectures for hybrid supercapacitors with high capacity and long-term cycling durability

S. Chandra Sekhar1Goli Nagaraju1,2Bhimanaboina Ramulu1Sk. Khaja Hussain1D. Narsimulu1Jae Su Yu1( )
Department of Electronic Engineering, Institute for Wearable Convergence Electronics,Kyung Hee University, 1732 Deogyeong-daero,Gihung-gu, Yongin-si, Gyeonggi-do,17104,Republic of Korea;
Department of Chemical Engineering,College of Engineering, Kyung Hee University, 1732 Deogyeong-daero,Gihung-gu, Yongin-si, Gyeonggi-do,17104,Republic of Korea;
Show Author Information

Graphical Abstract

Abstract

Transition metal oxide/hydroxide with multifunctional hierarchical nanostructures has attracted widespread attention in supercapacitors (SCs) because of their large accessible surface area, high electrochemical activity and superior redox chemistry. Herein, core-shell-like copper (Cu) hydroxide nanotube arrays grafted nickel aluminum layered double hydroxide nanosheets were facilely synthesized on porous Cu foam (CH NTAs@NiAl LDH NSs) for use as an efficient battery-type electrode in hybrid SCs. With the synergistic effects of NiAl LDH NSs on well-adhered CH NTAs/CF, the core-shell-like composite (prepared for 24 h) delivered a maximum areal capacity of 334.3 µAh/cm2 at a current density of 3 mA/cm2 in 2 M KOH electrolyte, which is comparatively higher than other samples synthesized at different growth times. Moreover, the core-shell-like CH NTAs@NiAl LDH NSs-24 demonstrated an outstanding cycling stability of 134.3% after 10, 000 cycles. Utilizing high capacity and stability of CH NTAs@NiAl LDH NSs-24, a pouch-type hybrid SC was further assembled with core-shell-like composite as a positive electrode and reduced graphene oxide as a negative electrode with a filter paper as a separator in aqueous alkaline electrolyte. The hybrid SC showed a high areal capacity of 250 µAh/cm2 at 2 mA/cm2 with maximum areal energy and power densities of 181.9 µWh/cm2 and 24, 991.5 µW/cm2, respectively. Successfully harvesting the solar energy via solar cell panel and subsequently delivering the stored energy to switching and proximity applications also demonstrated the real-time applicability of our hybrid SCs.

Electronic Supplementary Material

Download File(s)
12274_2019_2492_MOESM1_ESM.pdf (6 MB)

References

1

Guo, W.; Yu, C.; Li, S. F.; Wang, Z.; Yu, J. H.; Huang, H. W.; Qiu, J. S. Strategies and insights towards the intrinsic capacitive properties of MnO2 for supercapacitors: Challenges and perspectives. Nano Energy 2019, 57, 459-472.

2

Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845-854.

3

Geng, P. B.; Zheng, S. S.; Tang, H.; Zhu, R. M.; Zhang, L.; Cao, S.; Xue, H. G.; Pang, H. Transition metal sulfides based on graphene for electrochemical energy storage. Adv. Energy Mater. 2018, 8, 1703259.

4

Nagaraju, G.; Chandra Sekhar, S.; Krishna Bharat, L.; Yu, J. S. Wearable fabrics with self-branched bimetallic layered double hydroxide coaxial nanostructures for hybrid supercapacitors. ACS Nano 2017, 11, 10860-10874.

5

Zhang, J. L.; Li, Y.; Zhang, Y.; Qian, X. Y.; Niu, R. C.; Hu, R. D.; Zhu, X. F.; Wang, X.; Zhu, J. W. The enhanced adhesion between overlong TiNxOy/ MnO2 nanoarrays and Ti substrate: Towards flexible supercapacitors with high energy density and long service life. Nano Energy 2018, 43, 91-102.

6

Lee, G.; Kim, D.; Kim, D.; Oh, S.; Yun, J.; Kim, J.; Lee, S. S.; Ha, J. S. Fabrication of a stretchable and patchable array of high performance micro-supercapacitors using a non-aqueous solvent based gel electrolyte. Energy Environ. Sci. 2015, 8, 1764-1774.

7

Yi, F.; Ren, H. Y.; Dai, K. R.; Wang, X. F.; Han, Y. Z.; Wang, K. X.; Li, K.; Guan, B. L.; Wang, J.; Tang, M. et al. Solar thermal-driven capacitance enhancement of supercapacitors. Energy Environ. Sci. 2018, 11, 2016-2024.

8

Seo, D. H.; Han, Z. J.; Kumar, S.; Ostrikov, K. Structure-controlled, vertical graphene-based, binder-free electrodes from plasma-reformed butter enhance supercapacitor performance. Adv. Energy Mater. 2013, 3, 1316-1323.

9

Xie, M. J.; Duan, S. Y.; Shen, Y.; Fang, K.; Wang, Y. Z.; Lin, M.; Guo, X. F. In-situ-grown Mg(OH)2-derived hybrid α-Ni(OH)2 for highly stable supercapacitor. ACS Energy Lett. 2016, 1, 814-819.

10

Xiang, K.; Xu, Z. C.; Qu, T. T.; Tian, Z. F.; Zhang, Y.; Wang, Y. Z.; Xie, M. J.; Guo, X. K.; Ding, W. P.; Guo, X. F. Two dimensional oxygen- vacancy-rich Co3O4 nanosheets with excellent supercapacitor performances. Chem. Commun. 2017, 53, 12410-12413.

11

Sun, G. Q.; Yang, H. S.; Zhang, G. F.; Gao, J.; Jin, X. T.; Zhao, Y.; Jiang, L.; Qu, L. T. A capacity recoverable zinc-ion micro-supercapacitor. Energy Environ. Sci. 2018, 11, 3367-3374.

12

Heo, Y. J.; Lee, J. W.; Son, Y. R.; Lee, J. H.; Yeo, C. S.; Lam, T. D.; Park, S. Y.; Park, S. J.; Sinh, L. H.; Shin, M. K. Large-scale conductive yarns based on twistable korean traditional paper (Hanji) for supercapacitor applications: Toward high-performance paper supercapacitors. Adv. Energy Mater. 2018, 8, 1801854.

13

Le Comte, A.; Brousse, T.; Bélanger, D. New generation of hybrid carbon/ Ni(OH)2 electrochemical capacitor using functionalized carbon electrode. J. Power Sources 2016, 326, 702-710.

14

Li, J. E.; Wang, Y. W.; Xu, W. N.; Wang, Y.; Zhang, B.; Luo, S.; Zhou, X. Y.; Zhang, C. L.; Gu, X.; Hu, C. G. Porous Fe2O3 nanospheres anchored on activated carbon cloth for high-performance symmetric supercapacitors. Nano Energy 2019, 57, 379-387.

15

Veerasubramani, G. K.; Krishnamoorthy, K.; Kim, S. J. Electrochemical performance of an asymmetric supercapacitor based on graphene and cobalt molybdate electrodes. RSC Adv. 2015, 5, 16319-16327.

16

Chandra Sekhar, S.; Nagaraju, G.; Yu, J. S. High-performance pouch-type hybrid supercapacitor based on hierarchical NiO-Co3O4-NiO composite nanoarchitectures as an advanced electrode material. Nano Energy 2018, 48, 81-92.

17

Xie, M. J.; Xu, Z. C.; Duan, S. Y.; Tian, Z. F.; Zhang, Y.; Xiang, K.; Lin, M.; Guo, X. F.; Ding, W. P. Facile growth of homogeneous Ni(OH)2 coating on carbon nanosheets for high-performance asymmetric supercapacitor applications. Nano Res. 2018, 11, 216-224.

18

Zhu, Y. F.; Huang, H. F.; Li, G. X.; Liang, X. Q.; Zhou, W. Z.; Guo, J.; Wei, W. L.; Tang, S. L. Graphene-anchored NiCoO2 nanoarrays as supercapacitor electrode for enhanced electrochemical performance. Electrochim. Acta 2017, 248, 562-569.

19

Huang, L.; Chen, D. C.; Ding, Y.; Feng, S.; Wang, Z. L.; Liu, M. L. Nickel-cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett. 2013, 13, 3135-3139.

20

Huang, Y. X.; Yan, C.; Shi, X.; Zhi, W.; Li, Z. M.; Yan, Y. X.; Zhang, M. L.; Cao, G. Z. Ni0.85Co0.15WO4 nanosheet electrodes for supercapacitors with excellent electrical conductivity and capacitive performance. Nano Energy 2018, 48, 430-440.

21

Nagaraju, G.; Ko, Y. H.; Yu, J. S. Self-assembled hierarchical β-cobalt hydroxide nanostructures on conductive textiles by one-step electrochemical deposition. CrystEngComm. 2014, 16, 11027-11034.

22

Chen, H.; Zhang, F.; Fu, S.; Duan, X. In situ microstructure control of oriented layered double hydroxide monolayer films with curved hexagonal crystals as superhydrophobic materials. Adv. Mater. 2006, 18, 3089-3093.

23

Béléké, A. B.; Mizuhata, M. Electrochemical properties of nickel-aluminum layered double hydroxide/carbon composite fabricated by liquid phase deposition. J. Power Sources 2010, 195, 7669-7676.

24

Mandel, K.; Drenkova-Tuhtan, A.; Hutter, F.; Gellermann, C.; Steinmetz, H.; Sextl, G. Layered double hydroxide ion exchangers on superparamagnetic microparticles for recovery of phosphate from waste water. J. Mater. Chem. A 2013, 1, 1840-1848.

25

Li, B. X.; He, J.; Evans, D. G.; Duan, X. Enteric-coated layered double hydroxides as a controlled release drug delivery system. Int. J. Pharm. 2004, 287, 89-95.

26

Liu, Y. Y.; Teng, X.; Mi, Y. L.; Chen, Z. F. A new architecture design of Ni-Co LDH-based pseudocapacitors. J. Mater. Chem. A 2017, 5, 24407-24415.

27

Heli, H.; Pishahang, J.; Amiri, H. B. Synthesis of hexagonal CoAl-layered double hydroxide nanoshales/carbon nanotubes composite for the non- enzymatic detection of hydrogen peroxide. J. Electroanal. Chem. 2016, 768, 134-144.

28

Wang, F. F.; Sun, S. G.; Xu, Y. Q.; Wang, T.; Yu, R. J.; Li, H. J. High performance asymmetric supercapacitor based on cobalt nickle iron-layered double hydroxide/carbon nanofibres and activated carbon. Sci. Rep. 2017, 7, 4707.

29

Zhang, L. J.; Hui, K. N.; Hui, K. S.; Lee, H. Facile synthesis of porous CoAl-layered double hydroxide/graphene composite with enhanced capacitive performance for supercapacitors. Electrochim. Acta 2015, 186, 522-529.

30

Cheng, H. H.; Long, L.; Shu, D.; Wu, J. Q.; Gong, Y. B.; He, C.; Kang, Z. X.; Zou, X. P. The supercapacitive behavior and excellent cycle stability of graphene/MnO2 composite prepared by an electrostatic self-assembly process. Int. J. Hydrogen Energy 2014, 39, 16151-16161.

31

Nagaraju, G.; Raju, G. S. R.; Ko, Y. H.; Yu, J. S. Hierarchical Ni-Co layered double hydroxide nanosheets entrapped on conductive textile fibers: A cost-effective and flexible electrode for high-performance pseudocapacitors. Nanoscale 2016, 8, 812-825.

32

Huang, S.; Zhu, G. N.; Zhang, C.; Tjiu, W. W.; Xia, Y. Y.; Liu, T. X. Immobilization of Co-Al Layered double hydroxides on graphene oxide nanosheets: Growth mechanism and supercapacitor studies. ACS Appl. Mater. Interfaces 2012, 4, 2242-2249.

33

Zhang, S. L.; Lum, C.; Pan, N. Enhanced performance of carbon/carbon supercapacitors upon graphene addition. Nanotechnol. Environ. Eng. 2017, 2, 9.

34

Abushrenta, N.; Wu, X. C.; Wang, J. N.; Liu, J. F.; Sun, X. M. Hierarchical Co-based porous layered double hydroxide arrays derived via alkali etching for high-performance supercapacitors. Sci. Rep. 2015, 5, 13082.

35

Sekhar, S. C.; Nagaraju, G.; Ramulu, B.; Yu, J. S. Hierarchically designed Ag@Ce6Mo10O39 marigold flower-like architectures: An efficient electrode material for hybrid supercapacitors. ACS Appl. Mater. Interfaces 2018, 10, 36976-36987.

36

Chen, P. C.; Shen, G. Z.; Shi, Y.; Chen, H. T.; Zhou, C. W. Preparation and characterization of flexible asymmetric supercapacitors based on transition- metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. ACS Nano 2010, 4, 4403-4411.

37

Nagaraju, G.; Cha, S. M.; Sekhar, S. C.; Yu, J. S. Metallic layered polyester fabric enabled nickel selenide nanostructures as highly conductive and binderless electrode with superior energy storage performance. Adv. Energy Mater. 2017, 7, 1601362.

38

Lu, Q. L.; Zhao, S. X.; Chen, C. K.; Wang, X.; Deng, Y. F.; Nan, C. W. A novel pseudocapacitance mechanism of elm seed-like mesoporous MoO3-x nanosheets as electrodes for supercapacitors. J. Mater. Chem. A 2016, 4, 14560-14566.

39

Nagaraju, G.; Ko, Y. H.; Cha, S. M.; Im, S. H.; Yu, J. S. A facile one-step approach to hierarchically assembled core-shell-like MnO2@MnO2 nanoarchitectures on carbon fibers: An efficient and flexible electrode material to enhance energy storage. Nano Res. 2016, 9, 1507-1522.

40

Veerasubramani, G. K.; Krishnamoorthy, K.; Kim, S. J. Improved electrochemical performances of binder-free CoMoO4 nanoplate arrays@Ni foam electrode using redox additive electrolyte. J. Power Sources 2016, 306, 378-386.

41

Veerasubramani, G. K.; Chandrasekhar, A.; Sudhakaran, M. S. P.; Mok, Y. S.; Kim, S. J. Liquid electrolyte mediated flexible pouch-type hybrid supercapacitor based on binderless core-shell nanostructures assembled with honeycomb-like porous carbon. J. Mater. Chem. A 2017, 5, 11100-11113.

42

Wang, X.; Sumboja, A.; Lin, M. F.; Yan, J.; Lee, P. S. Enhancing electrochemical reaction sites in nickel-cobalt layered double hydroxides on zinc tin oxide nanowires: A hybrid material for an asymmetric supercapacitor device. Nanoscale 2012, 4, 7266-7272.

43

Babu, I. M.; Purushothaman, K. K.; Muralidharan, G. Ag3O4 grafted NiO nanosheets for high performance supercapacitors. J. Mater. Chem. A 2015, 3, 420-427.

44

Xu, K. B.; Li, W. Y.; Liu, Q.; Li, B.; Liu, X. J.; An, L.; Chen, Z. G.; Zou, R. J.; Hu, J. Q. Hierarchical mesoporous NiCo2O4@MnO2 core-shell nanowire arrays on nickel foam for aqueous asymmetric supercapacitors. J. Mater. Chem. A 2014, 2, 4795-4802.

45

Kong, W.; Lu, C. C.; Zhang, W.; Pu, J.; Wang, Z. H. Homogeneous core-shell NiCo2S4 nanostructures supported on nickel foam for supercapacitors. J. Mater. Chem. A 2015, 3, 12452-12460.

46

Luan, F.; Wang, G. M.; Ling, Y. C.; Lu, X. H.; Wang, H. Y.; Tong, Y. X.; Liu, X. X.; Li, Y. High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode. Nanoscale 2013, 5, 7984-7990.

47

Sekhar, S. C.; Nagaraju, G.; Yu, J. S. Conductive silver nanowires-fenced carbon cloth fibers-supported layered double hydroxide nanosheets as a flexible and binder-free electrode for high-performance asymmetric supercapacitors. Nano Energy 2017, 36, 58-67.

48

Yang, M. Y.; Cheng, H.; Gu, Y. Y.; Sun, Z. F.; Hu, J.; Cao, L. J.; Lv, F. C.; Li, M. C.; Wang, W. X.; Wang, Z. Y. et al. Facile electrodeposition of 3D concentration-gradient Ni-Co hydroxide nanostructures on nickel foam as high performance electrodes for asymmetric supercapacitors. Nano Res. 2015, 8, 2744-2754.

49

Nagaraju, G.; Sekhar, S. C.; Ramulu, B.; Bharat, L. K.; Raju, G. S. R.; Han, Y. K.; Yu, J. S. Enabling redox chemistry with hierarchically designed bilayered nanoarchitectures for pouch-type hybrid supercapacitors: A sunlight- driven rechargeable energy storage system to portable electronics. Nano Energy 2018, 50, 448-461.

Nano Research
Pages 2597-2608
Cite this article:
Chandra Sekhar S, Nagaraju G, Ramulu B, et al. Multifunctional core-shell-like nanoarchitectures for hybrid supercapacitors with high capacity and long-term cycling durability. Nano Research, 2019, 12(10): 2597-2608. https://doi.org/10.1007/s12274-019-2492-7
Topics:

848

Views

32

Crossref

N/A

Web of Science

33

Scopus

3

CSCD

Altmetrics

Received: 19 April 2019
Revised: 20 July 2019
Accepted: 27 July 2019
Published: 15 August 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return