AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

The role of phase impurities and lattice defects on the electron dynamics and photochemistry of CuFeO2 solar photocathodes

Elizabeth A. Fugate1Somnath Biswas1Mathew C. Clement1Minkyu Kim2Dongjoon Kim2Aravind Asthagiri2( )L. Robert Baker1( )
Department of Chemistry and BiochemistryThe Ohio State University, ColumbusOH43210USA
Department of Chemical and Biomolecular EngineeringThe Ohio State University, ColumbusOH43210USA
Show Author Information

Graphical Abstract

Abstract

CuFeO2 is a promising photocathode for H2 evolution and CO2 reduction reactions. To better understand the complex defect chemistry and role of impurity phases in this material and their effect on the photochemical performance, we employ visible light transient absorption spectroscopy and density functional theory (DFT) calculations to investigate the electron dynamics in electrochemically deposited Cu-Fe oxide thin films. Kinetic analysis of carrier lifetime shows a fast, sub-ps contribution to relaxation followed by persistence of a long-lived state to time delays greater than 2 ns. Increasing amplitude of the long-lived state is shown to correlate with the rate of fast initial relaxation, and this is explained in terms of a competition between charge carrier trapping and charge separation. Charge separation in CuFeO2 occurs via hole thermalization from O 2p to Cu 3d valence band states leading to segregation of electrons and holes across layers in the CuFeO2 lattice. Correlation between transient absorption measurements and DFT calculations suggest that Cu vacancies enhance photochemical performance by facilitating charge separation kinetics. In contrast, O interstitials are predicted to switch the relative positions of O 2p and Cu 3d valence band states, which would inhibit charge separation by inter-band hole thermalization. Finally, we find no evidence for electron injection from CuFeO2 to CuO suggesting that charge separation at this heterostructure interface does not play a role in the carrier lifetime or photochemical performance of the catalysts studied here.

Electronic Supplementary Material

Download File(s)
12274_2019_2493_MOESM1_ESM.pdf (3.5 MB)

References

1

Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446-6473.

2

Sivula, K. Metal oxide photoelectrodes for solar fuel production, surface traps, and catalysis. J. Phys. Chem. Lett. 2013, 4, 1624-1633.

3

Sivula, K.; van de Krol, R. Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater. 2016, 1, 15010.

4

Dotan, H.; Sivula, K.; Grätzel, M.; Rothschild, A.; Warren, S. C. Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger. Energy Environ. Sci. 2011, 4, 958-964.

5

Abdi, F. F.; Berglund, S. P. Recent developments in complex metal oxide photoelectrodes. J. Phys. D: Appl. Phys. 2017, 50, 193002.

6

Jiang, T. F.; Zhao, Y.; Liu, M. Y.; Chen, Y.; Xia, Z. Q.; Xue, H. G. Enhancing the lifetime of photoinduced charge carriers in CuFeO2 nanoplates by hydrothermal doping of Mg for photoelectrochemical water reduction. Phys. Status Solidi A 2018, 215, 1800056.

7

Sorenson, S.; Driscoll, E.; Haghighat, S.; Dawlaty, J. M. Ultrafast carrier dynamics in hematite films: The role of photoexcited electrons in the transient optical response. J. Phys. Chem. C 2014, 118, 23621-23626.

8

Prévot, M. S.; Jeanbourquin, X. A.; Bourée, W. S.; Abdi, F.; Friedrich, D.; van de Krol, R.; Guijarro, N.; Le Formal, F.; Sivula, K. Evaluating charge carrier transport and surface states in CuFeO2 photocathodes. Chem. Mater. 2017, 29, 4952-4962.

9

Kang, U.; Choi, S. K.; Ham, D. J.; Ji, S. M.; Choi, W.; Han, D. S.; Abdel-Wahab, A.; Park, H. Photosynthesis of formate from CO2 and water at 1% energy efficiency via copper iron oxide catalysis. Energy Environ. Sci. 2015, 8, 2638-2643.

10

Gu, J.; Wuttig, A.; Krizan, J. W.; Hu, Y.; Detweiler, Z. M.; Cava, R. J.; Bocarsly, A. B. Mg-doped CuFeO2 photocathodes for photoelectrochemical reduction of carbon dioxide. J. Phys. Chem. C 2013, 117, 12415-12422.

11

Prévot, M. S.; Guijarro, N.; Sivula, K. Enhancing the performance of a robust sol-gel-processed p-type delafossite CuFeO2 photocathode for solar water reduction. ChemSusChem 2015, 8, 1359-1367.

12

Wuttig, A.; Krizan, J. W.; Gu, J.; Frick, J. J.; Cava, R. J.; Bocarsly, A. B. The effect of Mg-doping and Cu nonstoichiometry on the photoelectrochemical response of CuFeO2. J. Mater. Chem. A 2017, 5, 165-171.

13

Read, C. G.; Park, Y.; Choi, K. S. Electrochemical synthesis of p-type CuFeO2 electrodes for use in a photoelectrochemical cell. J. Phys. Chem. Lett. 2012, 3, 1872-1876.

14

Oh, Y.; Yang, W.; Kim, J.; Jeong, S.; Moon, J. Enhanced photocurrent of transparent CuFeO2 photocathodes by self-light-harvesting architecture. ACS Appl. Mater. Interfaces 2017, 9, 14078-14087.

15

Yoon, S. H.; Han, D. S.; Kang, U.; Choi, S. Y.; Yiming, W.; Abdel-Wahab, A.; Park, H. Effects of electrochemical synthetic conditions on surface property and photocatalytic performance of copper and iron-mixed p-type oxide electrodes. J. Mater. Sci. Technol. 2018, 34, 1503-1510.

16

Barnabé, A.; Mugnier, E.; Presmanes, L.; Tailhades, P. Preparation of delafossite CuFeO2 thin films by Rf-sputtering on conventional glass substrate. Mater. Lett. 2006, 60, 3468-3470.

17

Lee, S.; Kang, U.; Piao, G.; Kim, S.; Han, D. S.; Park, H. Homogeneous photoconversion of seawater uranium using copper and iron mixed-oxide semiconductor electrodes. Appl. Catal. B: Environ. 2017, 207, 35-41.

18

Benko, F. A.; Koffyberg, F. P. Opto-electronic properties of p- and n-type delafossite, CuFeO2. J. Phys. Chem. Solids 1987, 48, 431-434.

19

Ingram, B. J.; Harder, B. J.; Hrabe, N. W.; Mason, T. O.; Poeppelmeier, K. R. Transport and defect mechanisms in cuprous delafossites. 2. CuScO2 and CuYO2. Chem. Mater. 2004, 16, 5623-5629.

20

Bredar, A. R. C.; Blanchet, M. D.; Comes, R. B.; Farnum, B. H. Evidence and influence of copper vacancies in p-type CuGaO2 mesoporous films. ACS Appl. Energy Mater. 2019, 2, 19-28.

21

Jang, Y. J.; Park, Y. B.; Kim, H. E.; Choi, Y. H.; Choi, S. H.; Lee, J. S. Oxygen-intercalated CuFeO2 photocathode fabricated by hybrid microwave annealing for efficient solar hydrogen production. Chem. Mater. 2016, 28, 6054-6061.

22

Chen, H. Y.; Fu, G. W. Influences of post-annealing conditions on the formation of delafossite-CuFeO2 thin films. Appl. Surf. Sci. 2014, 288, 258-264.

23

Amrute, A. P.; Łodziana, Z.; Mondelli, C.; Krumeich, F.; Pérez-Ramírez, J. Solid-state chemistry of cuprous delafossites: Synthesis and stability aspects. Chem. Mater. 2013, 25, 4423-4435.

24

Kalinin, S. V.; Spaldin, N. A. Functional ion defects in transition metal oxides. Science 2013, 341, 858-859.

25

Rettie, A. J. E.; Sturza, M.; Malliakas, C. D.; Botana, A. S.; Chung, D. Y.; Kanatzidis, M. G. Copper vacancies and heavy holes in the two-dimensional semiconductor KCu3-xSe2. Chem. Mater. 2017, 29, 6114-6121.

26

Rudradawong, C.; Ruttanapun, C. Effect of excess oxygen for CuFeO2.06 delafossite on thermoelectric and optical properties. Phys. B: Condens. Matter 2017, 526, 21-27.

27

Stöcker, T.; Exner, J.; Schubert, M.; Streibl, M.; Moos, R. Influence of oxygen partial pressure during processing on the thermoelectric properties of aerosol-deposited CuFeO2. Materials 2016, 9, 227.

28

Kang, U.; Park, H. A facile synthesis of CuFeO2 and CuO composite photocatalyst films for the production of liquid formate from CO2 and water over a month. J. Mater. Chem. A 2017, 5, 2123-2131.

29

Bera, A.; Deb, K.; Chattopadhyay, K. K.; Thapa, R.; Saha, B. Mixed phase delafossite structured p type CuFeO2/CuO thin film on FTO coated glass and its Schottky diode characteristics. Microelectron. Eng. 2016, 162, 23-26.

30

Bera, A.; Deb, K.; Sinthika, S.; Thapa, R.; Saha, B. Chemical modulation of valance band in delafossite structured CuFeO2 thin film and its photoresponse. Mater. Res. Express 2018, 5, 015909.

31

Jiang, C. M.; Reyes-Lillo, S. E.; Liang, Y. F.; Liu, Y. S.; Liu, G. J.; Toma, F. M.; Prendergast, D.; Sharp, I. D.; Cooper, J. K. Electronic structure and performance bottlenecks of CuFeO2 photocathodes. Chem. Mater. 2019, 31, 2524-2534.

32

Husek, J.; Cirri, A.; Biswas, S.; Asthagiri, A.; Baker, L. R. Hole thermalization dynamics facilitate ultrafast spatial charge separation in CuFeO2 solar photocathodes. J. Phys. Chem. C 2018, 122, 11300-11304.

33

Yang, X.; Fugate, E. A.; Mueanngern, Y.; Baker, L. R. Photoelectrochemical CO2 reduction to acetate on iron-copper oxide catalysts. ACS Catal. 2017, 7, 177-180.

34

Riveros, G.; Garín, C.; Ramírez, D.; Dalchiele, E. A.; Marotti, R. E.; Pereyra, C. J.; Spera, E.; Gómez, H.; Grez, P.; Martín, F. et al. Delafossite CuFeO2 thin films electrochemically grown from a DMSO based solution. Electrochim. Acta 2015, 164, 297-306.

35

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953.

36

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558-561.

37

Kresse, G. Ab initio molecular dynamics for liquid metals. J. Non. Cryst. Solids 1995, 192-193, 222-229.

38

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.

39

Krukau, A. V.; Vydrov, O. A.; Izmaylov, A. F.; Scuseria, G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 2006, 125, 224106.

40

Perdew, J. P.; Ernzerhof, M.; Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 1996, 105, 9982.

41

Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 194101.

42

Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207-8215.

43

Heyd, J.; Scuseria, G. E. Efficient hybrid density functional calculations in solids: Assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional. J. Chem. Phys. 2004, 121, 1187-1192.

44

Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 1998, 57, 1505-1509.

45

Ye, F.; Ren, Y.; Huang, Q.; Fernandez-Baca, J. A.; Dai, P. C.; Lynn, J. W.; Kimura, T. Spontaneous spin-lattice coupling in the geometrically frustrated triangular lattice antiferromagnet CuFeO2. Phys. Rev. B 2006, 73, 220404.

46

Bader, R. F. W. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, New York, 1994.

47

Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 2006, 36, 354-360.

48

Sanville, E.; Kenny, S. D.; Smith, R.; Henkelman, G. Improved grid-based algorithm for Bader charge allocation. J. Comput. Chem. 2007, 28, 899-908.

49

Tang, W.; Sanville, E.; Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 2009, 21, 084204.

50

Xiong, D. H.; Qi, Y. K.; Li, X. W.; Liu, X. X.; Tao, H. Z.; Chen, W.; Zhao, X. J. Hydrothermal synthesis of delafossite CuFeO2 crystals at 100 ℃. RSC Adv. 2015, 5, 49280-49286.

51

Stöcker, T.; Moos, R. Effect of oxygen partial pressure on the phase stability of copper-iron delafossites at elevated temperatures. Materials 2018, 11, 1888.

52

Amini, M.; Kafshdouzsani, M. H.; Akbari, A.; Gautam, S.; Shim, C. H.; Chae, K. H. Spinel copper ferrite nanoparticles: Preparation, characterization and catalytic activity. Appl. Organomet. Chem. 2018, 32, e4470.

53

Joshi, T.; Senty, T. R.; Trappen, R.; Zhou, J. L.; Chen, S.; Ferrari, P.; Borisov, P.; Song, X. Y.; Holcomb, M. B.; Bristow, A. D. et al. Structural and magnetic properties of epitaxial delafossite CuFeO2 thin films grown by pulsed laser deposition. J. Appl. Phys. 2015, 117, 013908.

54

Mugnier, E.; Barnabé, A.; Tailhades, P. Synthesis and characterization of CuFeO2+δ delafossite powders. Solid State Ionics 2006, 177, 607-612.

55

Zhu, C. Q.; Osherov, A.; Panzer, M. J. Surface chemistry of electrodeposited Cu2O films studied by XPS. Electrochim. Acta 2013, 111, 771-778.

56

Carneiro, L. M.; Cushing, S. K.; Liu, C.; Su, Y. D.; Yang, P. D.; Alivisatos, A. P.; Leone, S. R. Excitation-wavelength-dependent small polaron trapping of photoexcited carriers in α-Fe2O3. Nat. Mater. 2017, 16, 819-825.

57

Sturman, B.; Podivilov, E.; Gorkunov, M. Origin of stretched exponential relaxation for hopping-transport models. Phys. Rev. Lett. 2003, 91, 176602.

58

Pendlebury, S. R.; Barroso, M.; Cowan, A. J.; Sivula, K.; Tang, J. W.; Grätzel, M.; Klug, D.; Durrant, J. R. Dynamics of photogenerated holes in nanocrystalline α-Fe2O3 electrodes for water oxidation probed by transient absorption spectroscopy. Chem Commun. 2011, 47, 716-718.

59

Pesci, F. M.; Wang, G. M.; Klug, D. R.; Li, Y.; Cowan, A. J. Efficient Suppression of electron-hole recombination in oxygen-deficient hydrogen-treated TiO2 nanowires for photoelectrochemical water splitting. J. Phys. Chem. C 2013, 117, 25837-25844.

60

Moss, B.; Lim, K. K.; Beltram, A.; Moniz, S.; Tang, J. W.; Fornasiero, P.; Barnes, P.; Durrant, J.; Kafizas, A. Comparing photoelectrochemical water oxidation, recombination kinetics and charge trapping in the three polymorphs of TiO2. Sci. Rep. 2017, 7, 2938.

61

Sturman, B.; Podivilov, E.; Gorkunov, M. Origin of stretched exponential relaxation for hopping-transport models. Phys. Rev. Lett. 2003, 91, 176602.

Nano Research
Pages 2390-2399
Cite this article:
Fugate EA, Biswas S, Clement MC, et al. The role of phase impurities and lattice defects on the electron dynamics and photochemistry of CuFeO2 solar photocathodes. Nano Research, 2019, 12(9): 2390-2399. https://doi.org/10.1007/s12274-019-2493-6
Topics:
Part of a topical collection:

777

Views

35

Crossref

N/A

Web of Science

34

Scopus

0

CSCD

Altmetrics

Received: 06 June 2019
Revised: 19 July 2019
Accepted: 26 July 2019
Published: 08 August 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return