Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
This work reports a comprehensive study of a novel polyol method that can successfully synthesize layered LiNi0.4Mn0.4Co0.2O2, spinel LiNi0.5Mn1.5O4, and olivine LiCoPO4 cathode materials. When properly designed, polyol method offers many advantages such as low cost, ease of use, and proven scalability for industrial applications. Most importantly, the unique properties of polyol solvent allow for greater morphology control as shown by all the resulting materials exhibiting monodispersed nanoparticles morphology. This morphology contributes to improved lithium ion transport due to short diffusion lengths. Polyol-synthesized LiNi0.4Mn0.4Co0.2O2 delivers a reversible capacity of 101 and 82 mAh·g-1 using high current rate of 5C and 10C, respectively. It also displays surprisingly high surface structure stability after charge-discharge processes. Each step of the reaction was investigated to understand the underlying polyol synthesis mechanism. A combination of in situ and ex situ studies reveal the structural and chemical transformation of Ni-Co alloy nanocrystals overwrapped by a Mn- and Li-embedded organic matrix to a series of intermediate phases, and then eventually to the desired layered oxide phase with a homogeneous distribution of Ni, Co, and Mn. We envisage that this type of analysis will promote the development of optimized synthesis protocols by establishing links between experimental factors and important structural and chemical properties of the desired product. The insights can open a new direction of research to synthesize high-performance intercalation compounds by allowing unprecedented control of intermediate phases using experimental parameters.
Liu, C. F.; Neale, Z. G.; Cao, G. Z. Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater. Today 2016, 19, 109-123.
Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652-657.
Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928-935.
Brodd, R. J. Batteries for Sustainability: Selected Entries from the Encyclopedia of Sustainability Science and Technology; Springer-Verlag: New York, 2013.
Deshazer, H. D.; La Mantia, F.; Wessells, C.; Huggins, R. A.; Cui, Y. Synthesis of nanoscale lithium-ion battery cathode materials using a porous polymer precursor method. J. Electrochem. Soc. 2011, 158, A1079-A1082.
Zhang, Z.; Zhu, S. R.; Huang, J. D.; Yan, C. M. Acacia gum-assisted co-precipitating synthesis of LiNi0.5Co0.2Mn0.3O2 cathode material for lithium ion batteries. Ionics 2016, 22, 621-627.
Zhang, M. H.; Liu, H. D.; Liu, Z.; Fang, C. C.; Meng, Y. S. Modified coprecipitation synthesis of mesostructure-controlled Li-rich layered oxides for minimizing voltage degradation. ACS Appl. Mater. Interfaces 2018, 1, 3369-3376.
Zhao, R. R.; Yang, Z. L.; Liang, J. X.; Lu, D. L.; Liang, C. C.; Guan, X. C.; Gao, A. M.; Chen, H. Y. Understanding the role of Na-doping on Ni-rich layered oxide LiNi0.5Co0.2Mn0.3O2. J. Alloys Compd. 2016, 689, 318-325.
Shi, Y.; Zhang, M. H.; Fang, C. C.; Meng, Y. S. Urea-based hydrothermal synthesis of LiNi0.5Co0.2Mn0.3O2 cathode material for Li-ion battery. J. Power Sources 2018, 394, 114-121.
Zheng, J. M.; Gu, M.; Genc, A.; Xiao, J.; Xu, P. H.; Chen, X. L.; Zhu, Z. H.; Zhao, W. B.; Pullan, L.; Wang, C. M. et al. Mitigating voltage fade in cathode materials by improving the atomic level uniformity of elemental distribution. Nano Lett. 2014, 14, 2628-2635.
Cao, X.; Zhao, Y.; Zhu, L.; Xie, L.; Cao, X.; Xiong, S.; Wang, C. Synthesis and characterization of LiNi1/3Co1/3Mn1/3O2 as cathode materials for Li-ion batteries via an efficacious sol-gel method. Int. J. Electrochem. Sci. 2016, 11, 5267-5278.
Fiévet, F.; Lagier, J. P.; Blin, B.; Beaudoin, B.; Figlarz, M. Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles. Solid State Ionics 1989, 32-33, 198-205.
Fiévet, F.; Ammar-Merah, S.; Brayner, R.; Chau, F.; Giraud, M.; Mammeri, F.; Peron, J.; Piquemal, J. Y.; Sicard, L.; Viau, G. The polyol process: A unique method for easy access to metal nanoparticles with tailored sizes, shapes and compositions. Chem. Soc. Rev. 2018, 47, 5187-5233.
Tao, A. R.; Habas, S.; Yang, P. D. Shape control of colloidal metal nanocrystals. Small 2008, 4, 310-325.
Chupas, P. J.; Chapman, K. W.; Kurtz, C.; Hanson, J. C.; Lee, P. L.; Grey, C. P. A versatile sample-environment cell for non-ambient X-ray scattering experiments. J. Appl. Cryst. 2008, 41, 822-824.
Toby, B. H.; Von Dreele, R. B. GSAS-Ⅱ: The genesis of a modern open-source all purpose crystallography software package. J. Appl. Cryst. 2013, 46, 544-549.
Juhás, P.; Davis, T.; Farrow, C. L.; Billinge, S. J. L. PDFgetX3: A rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions. J. Appl. Cryst. 2013, 46, 560-566.
Farrow, C. L.; Juhas, P.; Liu, J. W.; Bryndin, D.; Božin, E. S.; Bloch, J.; Proffen, T.; Billinge, S. J. L. PDFfit2 and PDFgui: Computer programs for studying nanostructure in crystals. J. Phys. : Condens. Matter 2007, 19, 335219.
Roisnel, T.; Rodríquez-Carvajal, J. WinPLOTR: A windows tool for powder diffraction pattern analysis. Mater. Sci. Forum 2001, 378-381, 118-123.
Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B: Condens. Matter 1993, 192, 55-69.
Qiao, R. M.; Li, Q. H.; Zhuo, Z. Q.; Sallis, S.; Fuchs, O.; Blum, M.; Weinhardt, L.; Heske, C.; Pepper, J.; Jones, M. et al. High-efficiency in situ resonant inelastic X-ray scattering (iRIXS) endstation at the advanced light source. Rev. Sci. Instrum. 2017, 88, 033106.
Li, Q. H.; Qiao, R. M.; Wray, L. A.; Chen, J.; Zhuo, Z. Q.; Chen, Y. X.; Yan, S. S.; Pan, F.; Hussain, Z.; Yang, W. L. Quantitative probe of the transition metal redox in battery electrodes through soft X-ray absorption spectroscopy. J. Phys. D: Appl. Phys. 2016, 49, 413003.
Dong, H.; Chen, Y. C.; Feldmann, C. Polyol synthesis of nanoparticles: Status and options regarding metals, oxides, chalcogenides, and non-metal elements. Green Chem. 2015, 17, 4107-4132.
Imamoto, K.; Arai, M. Specific surface area of aggregate and its relation to concrete drying shrinkage. Mater. Struct. 2008, 41, 323-333.
Capco, D. G.; Chen, Y. S. Nanomaterial: Impacts on Cell Biology and Medicine; Springer: New York, 2014.
Zhang, D. R.; Luo, R. Modifying the BET model for accurately determining specific surface area and surface energy components of aggregates. Constr. Build. Mater. 2018, 175, 653-663.
Tran, N.; Croguennec, L.; Jordy, C.; Biensan, P.; Delmas, C. Influence of the synthesis route on the electrochemical properties of LiNi0.425Mn0.425Co0.15O2. Solid State Ionics 2005, 176, 1539-1547.
Arrebola, J. C.; Caballero, A.; Cruz, M.; Hernán, L.; Morales, J.; Castellón, E. R. Crystallinity control of a nanostructured LiNi0.5Mn1.5O4 spinel via polymer-assisted synthesis: A method for improving its rate capability and performance in 5 V lithium batteries. Adv. Funct. Mater. 2006, 16, 1904-1912.
Liu, H.; Zhang, X.; He, X.; Senyshyn, A.; Wilken, A.; Zhou, D.; Fromm, O.; Niehoff, P.; Yan, B.; Li, J. et al. Truncated octahedral high-voltage spinel LiNi0.5Mn1.5O4 cathode materials for lithium ion batteries: Positive influences of Ni/Mn disordering and oxygen vacancies. J. Electrochem. Soc. 2018, 165, A1886-A1896.
Wang, L. P.; Li, H.; Huang, X. J. Electrochemical properties and interfacial reactions of LiNi0.5Mn1.5O4-δ nanorods. Prog. Nat. Sci. : Mater. Int. 2012, 22, 207-212.
Song, J.; Shin, D. W.; Lu, Y. H.; Amos, C. D.; Manthiram, A.; Goodenough, J. B. Role of oxygen vacancies on the performance of Li[Ni0.5-xMn1.5+x]O4 (x = 0, 0.05, and 0.08) spinel cathodes for lithium-ion batteries. Chem. Mater. 2012, 24, 3101-3109.
Yang, J. G.; Han, X. P.; Zhang, X. L.; Cheng, F. Y.; Chen, J. Spinel LiNi0.5Mn1.5O4 cathode for rechargeable lithiumion batteries: Nano vs. micro, ordered phase (P4332) vs. disordered phase (Fd
Nytén, A.; Thomas, J. O. A neutron powder diffraction study of LiCoxFe1-xPO4 for x = 0, 0.25, 0.40, 0.60 and 0.75. Solid State Ionics 2006, 177, 1327-1330.
Bramnik, N. N.; Bramnik, K. G.; Baehtz, C.; Ehrenberg, H. Study of the effect of different synthesis routes on Li extraction-insertion from LiCoPO4. J. Power Sources 2005, 145, 74-81.
Ludwig, J.; Nilges, T. Recent progress and developments in lithium cobalt phosphate chemistry-syntheses, polymorphism and properties. J. Power Sources 2018, 382, 101-115.
Mayer, J.; Giannuzzi, L. A.; Kamino, T.; Michael, J. TEM sample preparation and FIB-induced damage. MRS Bull. 2007, 32, 400-407.
Wolff-Goodrich, S.; Lin, F.; Markus, I. M.; Nordlund, D.; Xin, H. L.; Asta, M.; Doeff, M. M. Tailoring the surface properties of LiNi0.4Mn0.4Co0.2O2 by titanium substitution for improved high voltage cycling performance. Phys. Chem. Chem. Phys. 2015, 17, 21778-21781.
Zheng, J. M.; Yan, P. F.; Zhang, J. D.; Engelhard, M. H.; Zhu, Z. H.; Polzin, B. J.; Trask, S.; Xiao, J.; Wang, C. M.; Zhang, J. Suppressed oxygen extraction and degradation of LiNixMnyCozO2cathodes at high charge cut-off voltages. Nano Res. 2017, 10, 4221-4231.
Lin, M. X.; Ben, L. B.; Sun, Y.; Wang, H.; Yang, Z. Z.; Gu, L.; Yu, X. Q.; Yang, X. Q.; Zhao, H. F.; Yu, R. C. et al. Insight into the atomic structure of high-voltage spinel LiNi0.5Mn1.5O4 cathode material in the first cycle. Chem. Mater. 2015, 27, 292-303.
Ben, L. B.; Yu, H. L.; Chen, B.; Chen, Y. Y.; Gong, Y.; Yang, X. N.; Gu, L.; Huang, X. J. Unusual spinel-to-layered transformation in LiMn2O4 cathode explained by electrochemical and thermal stability investigation. ACS Appl. Mater. Interfaces 2017, 9, 35463-35475.
Huang, R.; Ikuhara, Y. STEM characterization for lithium-ion battery cathode materials. Curr. Opin. Solid State Mater. Sci. 2012, 16, 31-38.
Gu, M.; Belharouak, I.; Genc, A.; Wang, Z. G.; Wang, D. P.; Amine, K.; Gao, F.; Zhou, G. W.; Thevuthasan, S.; Baer, D. R. et al. Conflicting roles of nickel in controlling cathode performance in lithium ion batteries. Nano Lett. 2012, 12, 5186-5191.
Armstrong, R. A.; Holzapfel, M.; Novak, P.; Johnson, C. S.; Kang, S. H.; Thackeray, M. M.; Bruce, P. G. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J. Am. Chem. Soc. 2006, 128, 8694-8698.
Ryu, W. H.; Lim, S. J.; Kim, W. K.; Kwon, H. 3-D dumbbell-like LiNi1/3Mn1/3Co1/3O2 cathode materials assembled with nano-building blocks for lithium-ion batteries. J. Power Sources 2014, 257, 186-191.
Xiao, J.; Chen, X. L.; Sushko, P. V.; Sushko, M. L.; Kovarik, L.; Feng, J. J.; Deng, Z. Q.; Zheng, J. M.; Graff, G. L.; Nie, Z. M. et al. High-performance LiNi0.5Mn1.5O4 Spinel controlled by Mn3+ concentration and site disorder. Adv. Mater. 2012, 24, 2109-2116.
Wu, Q.; Zhang, X. P.; Sun, S. W.; Wan, N.; Pan, D.; Bai, Y.; Zhu, H. Y.; Hu, Y. S.; Dai, S. Improved electrochemical performance of spinel LiMn1.5Ni0.5O4 through MgF2 nano-coating. Nanoscale 2015, 7, 15609-15617.
Bramnik, N. N.; Nikolowski, K.; Baehtz, G.; Bramnik, K. G.; Ehrenberg, H. Phase transitions occurring upon lithium insertion-extraction of LiCoPO4. Chem. Mater. 2007, 19, 908-915.
Kreder III, K. J.; Assat, G.; Manthiram, A. Microwave-assisted solvothermal synthesis of three polymorphs of LiCoPO4 and their electrochemical properties. Chem. Mater. 2015, 27, 5543-5549.
Julien, C.; Mauger, A.; Zaghib, K.; Groult, H. Optimization of layered cathode materials for lithium-ion batteries. Materials (Basel) 2016, 9, 595.
Kim, D. H.; Kim, J. Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties. Electrochem. Solid-State Lett. 2006, 9, A439-A442.
Chen, Z.; Chao, D. L.; Liu, J. L.; Copley, M.; Lin, J. Y.; Shen, Z. X.; Kim, G. T.; Passerini, S. 1D nanobar-like LiNi0.4Co0.2Mn0.4O2 as a stable cathode material for lithium-ion batteries with superior long-term capacity retention and high rate capability. J. Mater. Chem. A 2017, 5, 15669-15675.
Lin, F.; Markus, I. M.; Nordlund, D.; Weng, T. C.; Asta, M. D.; Xin, H. L.; Doeff, M. M. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 2014, 5, 3529.
Yoon, W. S.; Balasubramanian, M.; Chung, K. Y.; Yang, X. Q.; McBreen, J.; Grey, C. P.; Fischer, D. A. Investigation of the charge compensation mechanism on the electrochemically Li-ion deintercalated Li1-xCo1/3Ni1/3Mn1/3O2 electrode system by combination of soft and hard X-ray absorption spectroscopy. J. Am. Chem. Soc. 2005, 127, 17479-17487.
Shkrob, I. A.; Gilbert, J. A.; Phillips, P. J.; Klie, R.; Haasch, R. T.; Bareño, J.; Abraham, D. P. Chemical weathering of layered Ni-rich oxide electrode materials: Evidence for cation exchange. J. Electrochem. Soc. 2017, 164, A1489-A1498.
Hausbrand, R.; Cherkashinin, G.; Ehrenberg, H.; Gröting, M.; Albe, K.; Hess, C.; Jaegermann, W. Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: Methodology, insights and novel approaches. Mater. Sci. Eng. B 2015, 192, 3-25.
Jiang, X. Y.; Sha, Y. J.; Cai, R.; Shao, Z. P. The solid-state chelation synthesis of LiNi1/3Co1/3Mn1/3O2 as a cathode material for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 10536-10544.
Helveg, S.; López-Cartes, C.; Sehested, J.; Hansen, P. L.; Clausen, B. S.; Rostrup-nielsen, J. R.; Abild-Pedersen, F.; Nørskov J. K. Atomic-scale imaging of carbon nanofibre. Nature 2004, 427, 426-429.
Yoon, K. R.; Ko, J. W.; Youn, D. Y.; Park, C. B.; Kim, I. D. Synthesis of Ni-based co-catalyst functionalized W: BiVO4 nanofibers for solar water oxidation. Green Chem. 2016, 18, 944-950.
Singh, M. K.; Agarwal, A.; Gopal, R.; Swarnkar, R. K.; Kotnala, R. K. Dumbbell shaped nickel nanocrystals synthesized by a laser induced fragmentation method. J. Mater. Chem. 2011, 21, 11074-11079.
Zhu, J. H.; Wei, S. Y.; Li, Y. F.; Pallavkar, S.; Lin, H. F.; Haldolaarachchige, N.; Luo, Z. P.; Young, D. P.; Guo, Z. H. Comprehensive and sustainable recycling of polymer nanocomposites. J. Mater. Chem. 2011, 21, 16239-16246.
Yao, Q. L.; Chen, X. S.; Lu, Z. H. Catalytic dehydrogenation of NH3BH3, N2H4, and N2H4BH3 for chemical hydrogen storage. Energy Environ. Focus 2014, 3, 236-245.
Shang, H. S.; Pan, K. C.; Zhang, L.; Zhang, B.; Xiang, X. Enhanced activity of supported Ni catalysts promoted by Pt for rapid reduction of aromatic nitro compounds. Nanomaterials 2016, 6, 103.
Owen, E. A.; Jones, D. M. Effect of grain size on the crystal structure of cobalt. Proc. Phys. Soc. B 1954, 67, 456-466.
Li, W.; Borkiewicz, O. J.; Saubanère, M.; Doublet, M. L.; Flahaut, D.; Chupas, P. J.; Chapman, K. W.; Dambournet, D. Atomic structure of 2 nm size metallic cobalt prepared by electrochemical conversion: An in situ pair distribution function study. J. Phys. Chem. C 2018, 122, 23861-23866.
Petit, C.; Wang, Z. L.; Pileni, M. P. Seven-nanometer hexagonal close packed cobalt nanocrystals for high-temperature magnetic applications through a novel annealing process. J. Phys. Chem. B 2005, 109, 15309-15316.
Bertaut, E. F.; Tran Qui, D.; Burlet, P.; Burlet, P.; Thomas, M.; Moreau, J. M. Crystal structure of manganese acetate tetrahydrate. Acta Cryst. 1974, B30, 2234-2236.
Luna, C.; del Puerto Morales, M.; Serna, C. J.; Vázquez, M. Multidomain to single-domain transition for uniform Co80Ni20 nanoparticles. Nanotechnology 2003, 14, 268-272.
Sanz, R.; Luna, C.; Hernández-Vélez, M.; Vázquez, M.; López, D.; Mijangos, C. A magnetopolymeric nanocomposite: Co80Ni20 nanoparticles in a PVC matrix. Nanotechnology 2005, 16, 278-281.
Regan, T. J.; Ohldag, H.; Stamm, C.; Nolting, F.; Lüning, J.; Stöhr, J.; White, R. L. Chemical effects at metal/oxide interfaces studied by X-ray-absorption spectroscopy. Phys. Rev. B 2001, 64, 214422.
Hu, L.; Zhong, H.; Zheng, X. R.; Huang, Y. M.; Zhang, P.; Chen, Q. W. CoMn2O4 spinel hierarchical microspheres assembled with porous nanosheets as stable anodes for lithium-ion batteries. Sci. Rep. 2012, 2, 986.
Augustin, M.; Fenske, D.; Bardenhagen, I.; Westphal, A.; Knipper, M.; Plaggenborg, T.; Kolny-Olesiak, J.; Parisi, J. Manganese oxide phases and morphologies: A study on calcination temperature and atmospheric dependence. Beilstein J. Nanotechnol. 2015, 6, 47-59.
Zhang, D. J.; Jin, C. H.; Li, Z. Y.; Zhang, Z.; Li, J. X. Oxidation behavior of cobalt nanoparticles studied by in situ environmental transmission electron microscopy. Sci. Bull. 2017, 62, 775-778.
Ha, D. H.; Moreau, L. M.; Honrao, S.; Hennig, R. G.; Robinson, R. D. The oxidation of cobalt nanoparticles into Kirkendall-hollowed CoO and Co3O4: The diffusion mechanisms and atomic structural transformations. J. Phys. Chem. C 2013, 117, 14303-14312.
Grenier, A.; Liu, H.; Wiaderek, K. M.; Lebens-Higgins, Z. W.; Borkiewicz, O. J.; Piper, L. F. J.; Chupas, P. J.; Chapman, K. W. Reaction heterogeneity in LiNi0.8Co0.15Al0.05O2 induced by surface layer. Chem. Mater. 2017, 29, 7345-7352.
Wang, R.; Yu, X. Q.; Bai, J. M.; Li, H.; Huang, X. J.; Chen, L. Q.; Yang, X. Q. Electrochemical decomposition of Li2CO3 in NiO-Li2CO3 nanocomposite thin film and powder electrodes. J. Power Sources 2012, 218, 113-118.
Gulbransen, E. A.; Andrew, K. F. The kinetics of the oxidation of cobalt. J. Electrochem. Soc. 1951, 98, 241-251.
Railsback, J. G.; Johnston-Peck, A. C.; Wang, J. W.; Tracy, J. B. Size-dependent nanoscale kirkendall effect during the oxidation of nickel nanoparticles. ACS Nano 2010, 4, 1913-1920.
Zhu, J.; Chen, G. Y. Single-crystal based studies for correlating the properties and high-voltage performance of Li[NixMnyCo1-x-y]O2 cathodes. J. Mater. Chem. A 2019, 7, 5463-5474.