AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Iron sulfides with dopamine-derived carbon coating as superior performance anodes for sodium-ion batteries

Aihua Jin1,2<Seung-Ho Yu3<Jae-Hyuk Park1,2Seok Mun Kang1,2Mi-Ju Kim1,2Tae-Yeol Jeon4Junyoung Mun5( )Yung-Eun Sung1,2( )
Center for Nanoparticle Research,Institute for Basic Science (IBS),Seoul,08826,Republic of Korea;
School of Chemical and Biological Engineering,Seoul National University,Seoul,08826,Republic of Korea;
Department of Chemical and Biological Engineering,Korea University, 145 Anam-ro, Seongbuk-gu, Seoul,02841,Republic of Korea;
Beamline Department,Pohang Accelerator Laboratory (PAL),Pohang,37673,Republic of Korea;
Department of Energy and Chemical Engineering,Incheon National University, 12-1,Songdo-dong, Yeonsu-gu, Incheon,22012,Republic of Korea;

§ Aihua Jin and Seung-Ho Yu contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

High energy ball-milled iron sulfides with thin carbon layer coating (BM-FeS/C composites) were prepared by the simple and economical process. Ball-milled process, followed by carbon coating, reduced the particle size and increased the electrical conductivity. When employed as sodium-ion battery anodes, BM-FeS/C composites showed extremely high electrochemical performance with reversible specific capacity of 589.8 mAh·g-1 after 100 cycles at a current density of 100 mA·g-1. They also exhibited superior rate capabilities of 375.9 mAh·g-1 even at 3.2 A·g-1 and 423.6 mAh·g-1 at 1.5 A·g-1. X-ray absorption near edge structure analysis confirmed the electrochemical pathway for conversion reaction of BM-FeS/C composites.

Electronic Supplementary Material

Download File(s)
12274_2019_2495_MOESM1_ESM.pdf (2.5 MB)

References

1

Hwang, J. Y.; Myung, S. T.; Sun, Y. K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529–3614.

2

Peters, J.; Buchholz, D.; Passerini, S.; Weil, M. Life cycle assessment of sodium-ion batteries. Energy Environ. Sci. 2016, 9, 1744–1751.

3

Kang, H. Y.; Liu, Y. C.; Cao, K. Z.; Zhao, Y.; Jiao, L. F.; Wang, Y. J.; Yuan, H. T. Update on anode materials for Na-ion batteries. J. Mater. Chem. A 2015, 3, 17899–17913.

4

Shao, J. Y.; Li, X. R.; Wei, J. L.; Pang, H.; Chen, C. Y. Synthesis of iron phosphate and their composites for lithium/sodium ion batteries. Adv. Sustain. Syst. 2018, 2, 1700154.

5

Wen, Y.; He, K.; Zhu, Y. J.; Han, F. D.; Xu, Y. H.; Matsuda, I.; Ishii, Y.; Cumings, J.; Wang, C. S. Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun. 2014, 5, 4033.

6

Jache, B.; Adelhelm, P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew. Chem., Int. Ed. 2014, 53, 10169–10173.

7

Geng, P. B.; Zheng, S. S.; Tang, H.; Zhu, R. M.; Zhang, L.; Cao, S.; Xue, H. G.; Pang, H. Transition metal sulfides based on graphene for electrochemical energy storage. Adv. Energy Mater. 2018, 8, 1703259.

8

Xiao, Y.; Lee, S. H.; Sun, Y. K. The application of metal sulfides in sodium ion batteries. Adv. Energy Mater. 2017, 7, 1601329.

9

Luo, Y. Q.; Tang, Y. J.; Zheng S. S.; Yan, Y.; Xue, H. G.; Pang, H. Dual anode materials for lithium- and sodium-ion batteries. J. Mater. Chem. A 2018, 6, 4236–4259.

10

Li, Q.; Guo, X.; Zheng, M.; Pang, H. Some MoS2-based materials for sodium-ion battery. Funct. Mater. Lett. 2018, 11, 1840004.

11

Cho, J. S.; Park, J. S.; Kang, Y. C. Porous FeS nanofibers with numerous nanovoids obtained by Kirkendall diffusion effect for use as anode materials for sodium-ion batteries. Nano Res. 2017, 10, 897–907.

12

Wu, Z. G.; Li, J. T.; Zhong, Y. J.; Liu, J.; Wang, K.; Guo, X. D.; Huang, L.; Zhong, B. H.; Sun, S. G. Synthesis of FeS@C-N hierarchical porous microspheres for the applications in lithium/sodium ion batteries. J. Alloys Compd. 2016, 688, 790–797.

13

Cao, Z. J.; Song, H. H.; Cao, B.; Ma, J.; Chen, X. H.; Zhou, J. S.; Ma, Z. K. Sheet-on-sheet chrysanthemum-like C/FeS microspheres synthesized by one-step solvothermal method for high-performance sodium-ion batteries. J. Power Sources 2017, 364, 208–214.

14

Li, Q. D.; Wei, Q. L.; Zuo, W. B.; Huang, L.; Luo, W.; An, Q. Y.; Pelenovich, V. O.; Mai, L. Q.; Zhang, Q. J. Greigite Fe3S4 as a new anode material for high-performance sodium-ion batteries. Chem. Sci. 2017, 8, 160–164.

15

Lee, S. Y.; Kang, Y. C. Sodium-ion storage properties of FeS-deduced graphene oxide composite powder with a crumpled structure. Chem. —Eur. J. 2016, 22, 2769–2774.

16

Tan, Y. Z.; Wong, K. W.; Zhang, Z. L.; Ng, K. M. In situ synthesis of iron sulfide embedded porous carbon hollow spheres for sodium ion batteries. Nanoscale 2017, 9, 19408–19414.

17

Wei, X.; Li, W. H.; Shi, J. A.; Gu, L.; Yu, Y. FeS@C on carbon cloth as flexible electrode for both lithium and sodium storage. ACS Appl. Mater. Interfaces 2015, 7, 27804–27809.

18

Yu, S. H.; Jin, A. H.; Huang, X.; Yang, Y.; Huang, R.; Brock, J. D.; Sung, Y. E.; Abruña, H. D. SnS/C nanocomposites for high-performance sodium ion battery anodes. RSC Adv. 2018, 8, 23847–23853.

19

Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Kim, J.; Lee, J.; Ryu, J. H.; Oh, S. M.; Lee, K. T. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Adv. Mater. 2013, 25, 3045–3049.

20

Kim, Y.; Kim, Y.; Choi, A.; Woo, S.; Mok, D.; Choi, N. S.; Jung, Y. S.; Ryu, J. H.; Oh, S. M.; Lee, K. T. Tin phosphide as a promising anode material for Na‐ion batteries. Adv. Mater. 2014, 26, 4139–4144.

21

Lu, Y.; Li, B.; Zheng, S. S.; Xu, Y. X.; Xue, H. G.; Pang, H. Syntheses and energy storage applications of MxSy (M = Cu, Ag, Au) and their composites: Rechargeable batteries and supercapacitors. Adv. Funct. Mater. 2017, 27, 1703949.

22

Liu, R.; Mahurin, S. M.; Li, C.; Unocic, R. R.; Idrobo, J. C.; Gao, H. J.; Pennycook, S. J.; Dai, S. Dopamine as a carbon source: The controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites. Angew. Chem., Int. Ed. 2011, 50, 6799–6802.

23

Lee, H. J.; Kim, H. Graphite felt coated with dopamine-derived nitrogen-doped carbon as a positive electrode for a vanadium redox flow battery. J. Electrochem. Soc. 2015, 162, A1675-A1681.

24

Xu, Y. X.; Li, W. Y.; Zhang, F.; Zhang, X. L.; Zhang, W. J.; Lee, C. S.; Tang, Y. B. In situ incorporation of FeS nanoparticles/carbon nanosheets composite with an interconnected porous structure as a high-performance anode for lithium ion batteries. J. Mater. Chem. A 2016, 4, 3697–3703.

25

Sun, Y.; Dai, Y.; Duan, Y. Q.; Xu, X.; Lv, Y.; Yang, L.; Zou, J. L. Biofouling inhibition on nano-silver/ferrous sulfide/partly-graphitized carbon cathode with enhanced catalytic activity and durability for microbial fuel cells. Carbon 2017, 119, 394–402.

26

Wang, Q. H.; Zhang, W. C.; Guo, C.; Liu, Y. J.; Wang, C.; Guo, Z. P. In situ construction of 3D interconnected FeS@Fe3C@graphitic carbon networks for high-performance sodium-ion batteries. Adv. Funct. Mater. 2017, 27, 1703390.

27

Pratt, A. R.; Muir, I. J.; Nesbitt, H. W. X-ray photoelectron and Auger electron spectroscopic studies of pyrrhotite and mechanism of air oxidation. Geochim. Cosmochim. Acta 1994, 58, 827–841.

28

Zhou, T. F.; Pang, W. K.; Zhang, C. F.; Yang, J. P.; Chen, Z. X.; Liu, H. K.; Guo, Z. P. Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS. ACS Nano 2014, 8, 8323–8333.

29

Hu, Z.; Zhu, Z. Q.; Cheng, F. Y.; Zhang, K.; Wang, J. B.; Chen, C. C.; Chen, J. Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries. Energy Environ. Sci. 2015, 8, 1309–1316.

30

Tao, S.; Wu, D. J.; Chen, S. M.; Qian, B.; Chu, W. S.; Song, L. A versatile strategy for ultrathin SnS2 nanosheets confined in a N-doped graphene sheet composite for high performance lithium and sodium-ion batteries. Chem. Commun. 2018, 54, 8379–8382.

31

Wang, Y. X.; Seng, K. H.; Chou, S. L.; Wang, J. Z.; Guo, Z. P.; Wexler, D.; Liu, H. K.; Dou, S. X. Reversible sodium storage via conversion reaction of a MoS2-C composite. Chem. Commun. 2014, 50, 10730–10733.

32

Xia, C.; Zhang, F.; Liang, H. F.; Alshareef, H. N. Layered SnS sodium ion battery anodes synthesized near room temperature. Nano Res. 2017, 10, 4368–4377.

33

Hu, X.; Chen, J. X.; Zeng, G.; Jia, J. C.; Cai, P. W.; Chai, G. L.; Wen, Z. H. Robust 3D macroporous structures with SnS nanoparticles decorating nitrogen-doped carbon nanosheet networks for high performance sodium-ion batteries. J. Mater. Chem. A 2017, 5, 23460–23470.

34

Zhao, C. T.; Yu, C.; Zhang, M. D.; Sun, Q.; Li, S. F.; Banis, M. N.; Han, X. T.; Dong, Q.; Yang, J.; Wang, G. et al. Enhanced sodium storage capability enabled by super wide-interlayer-spacing MoS2 integrated on carbon fibers. Nano Energy 2017, 41, 66–74.

35

Shadike, Z.; Cao, M. H.; Ding, F.; Sang, L.; Fu, Z. W. Improved electrochemical performance of CoS2-MWCNT nanocomposites for sodium-ion batteries. Chem. Commun. 2015, 51, 10486–10489.

36

Wang, T. S.; Hu, P.; Zhang, C. J.; Du, H. P.; Zhang, Z. H.; Wang, X. G.; Chen, S. G.; Xiong, J. W.; Cui, G. L. Nickel disulfide–graphene nanosheets composites with improved electrochemical performance for sodium ion battery. ACS Appl. Mater. Interfaces 2016, 8, 7811–7817.

37

Wang, Y. X.; Yang, J. P.; Chou, S. L.; Liu, H. K.; Zhang, W. X.; Zhao, D. Y.; Dou, S. X. Uniform yolk-shell iron sulfide-carbon nanospheres for superior sodium-iron sulfide batteries. Nat. Commun. 2015, 6, 8689.

38

Li, L. L.; Peng, S. J.; Bucher, N.; Chen, H. Y.; Shen, N.; Nagasubramanian, A.; Eldho, E.; Hartung, S.; Ramakrishna, S.; Srinivasan, M. Large-scale synthesis of highly uniform Fe1-xS nanostructures as a high-rate anode for sodium ion batteries. Nano Energy 2017, 37, 81–89.

39

Kitajou A.; Yamaguchi J.; Hara S.; Okada S. Discharge/charge reaction mechanism of a pyrite-type FeS2 cathode for sodium secondary batteries. J. Power Sources 2014, 247, 391–395.

Nano Research
Pages 2609-2613
Cite this article:
Jin A, Yu S-H, Park J-H, et al. Iron sulfides with dopamine-derived carbon coating as superior performance anodes for sodium-ion batteries. Nano Research, 2019, 12(10): 2609-2613. https://doi.org/10.1007/s12274-019-2495-4
Topics:

672

Views

24

Crossref

N/A

Web of Science

25

Scopus

2

CSCD

Altmetrics

Received: 01 May 2019
Revised: 05 July 2019
Accepted: 27 July 2019
Published: 15 August 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return