AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A direct H2O2 production based on hollow porous carbon sphere-sulfur nanocrystal composites by confinement effect as oxygen reduction electrocatalysts

Guanyu Chen1Jiwei Liu3Qingqing Li1Pengfei Guan2Xuefeng Yu1Linshen Xing1Jie Zhang1Renchao Che1( )
Laboratory of Advanced Materials,Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University,Shanghai,200438,China;
Beijing Computational Science Research Center,Beijing,100193,China;
Innovative Center for Advanced Materials (ICAM),Hangzhou Dianzi University,Hangzhou,310012,China;
Show Author Information

Graphical Abstract

Abstract

Carbon-sulfur composites have drawn increasing interest in various fields including electrocatalysis because of their unique structures. However, carbon-sulfur composite with tiny sulfur nanocrystals has still received little attention. Herein, hollow porous carbon sphere-sulfur composite (HPCS-S) which possesses excellent electrochemical performance towards H2O2 has been prepared for the first time via a simple silica template method. The 2–5 nm sulfur nanocrystals being restricted in the channel of the hollow porous carbon spheres are under a strong compressive stress, which was further confirmed by high-resolution transmission electron microscopy (HRTEM) and GPA. The HPCS-S nanocrystals show better conductivity than amorphous sulfur clusters because of the reduction of the steric hindrance which efficiently promotes the electron transportation. Consequently, the higher activity and selectivity towards the 2e- oxygen reduction reaction (ORR) to H2O2 in alkaline solution was obtained. The H2O2 selectivity rises from 20% to over 70% after the sulfur addition and the H2O2 production rate achieves 183.99 mmol·gcatalyst-1 with the Faradaic efficiency of 70%. Furthermore, performance enhancement mechanism was also investigated using the density functional theory (DFT) calculations. After the introducing of sulfur nanocrystals, the appearance of S–S bond greatly decreases the overpotential compared with S-doping, which results in significant enhancement of the electrocatalytic property. Consequently, the HPCS-S can be an efficient H2O2 production electrocatalyst in alkaline solution.

Electronic Supplementary Material

Download File(s)
12274_2019_2496_MOESM1_ESM.pdf (2.6 MB)

References

1

Jones, C. W. Applications of Hydrogen Peroxide and Derivatives; Royal Society of Chemistry: Cambridge, 1999.

2

Berl, E. A new cathodic process for the production of H2O2. J. Electrochem. Soc. 1939, 76, 359-369

3

Sheng, Y. P.; Song, S. L.; Wang, X. L.; Song, L. Z.; Wang, C. J.; Sun, H. H.; Niu, X. Q. Electrogeneration of hydrogen peroxide on a novel highly effective acetylene black-PTFE cathode with PTFE film. Electrochim. Acta 2011, 56, 8651-8656

4

Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L. G. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process. Angew. Chem., Int. Ed. 2006, 45, 6962–6984.

5

Chen, S. C.; Chen, Z. H.; Siahrostami, S.; Higgins, D.; Nordlund, D.; Sokaras, D.; Kim, T. R.; Liu, Y. Z.; Yan, X. Z.; Nilsson, E. et al. Designing boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide. J. Am. Chem. Soc. 2018, 140, 7851–7859.

6

Fellinger, T. P.; Hasché, F.; Strasser, P.; Antonietti, M. Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide. J. Am. Chem. Soc. 2012, 134, 4072–4075.

7

Kuang, M.; Zheng, G. Nanostructured bifunctional redox electrocatalysts. Small 2016, 12, 5656–5675.

8

Zheng, Z. K.; Ng, Y. H.; Wang, D. W.; Amal, R. Epitaxial growth of Au-Pt-Ni nanorods for direct high selectivity H2O2 production. Adv. Mater. 2016, 28, 9949–9955.

9

Zhu, Y. P.; Guo, C. X.; Zheng, Y.; Qiao, S. Z. Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes. Acc. Chem. Res. 2017, 50, 915–923.

10

Yang, S.; Verdaguer-Casadevall, A.; Arnarson, L.; Silvioli, L.; Čolić, V.; Frydendal, R.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I. E. L. Toward the decentralized electrochemical production of H2O2: A focus on the catalysis. ACS Catal. 2018, 8, 4064–4081.

11

Arrigo, R.; Schuster, M. E.; Abate, S.; Giorgianni, G.; Centi, G.; Perathoner, S.; Wrabetz, S.; Pfeifer, V.; Antonietti, M.; Schlögl, R. Pd supported on carbon nitride boosts the direct hydrogen peroxide synthesis. ACS Catal. 2016, 6, 6959–6966.

12

Zheng, X. J.; Wu, J.; Cao, X. C.; Abbott, J.; Jin, C.; Wang, H. B.; Strasser, P.; Yang, R. Z.; Chen, X.; Wu, G. N-, P-, and S-doped graphene-like carbon catalysts derived from onium salts with enhanced oxygen chemisorption for Zn-air battery cathodes. Appl. Catal. B: Environ. 2019, 241, 442–451.

13

Hao, Y. J.; Zhang, X.; Yang, Q. F.; Chen, K.; Guo, J.; Zhou, D. Y.; Feng, L.; Slanina, Z. Highly porous defective carbons derived from seaweed biomass as efficient electrocatalysts for oxygen reduction in both alkaline and acidic media. Carbon 2018, 137, 93–103.

14

Jeon, I. Y.; Choi, H. J.; Jung, S. M.; Seo, J. M.; Kim, M. J.; Dai, L. M.; Baek, J. B. Large-scale production of edge-selectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction. J. Am. Chem. Soc. 2013, 135, 1386–1393.

15

Khalid, M.; Honorato, A. M. B.; Varela, H.; Dai, L. M. Multifunctional electrocatalysts derived from conducting polymer and metal organic framework complexes. Nano Energy 2018, 45, 127–135.

16

Li, Z. H.; Cui, J. Y.; Liu, Y. K.; Li, J. B.; Liu, K.; Shao, M. F. Electrosynthesis of well-defined metal-organic framework films and the carbon nanotube network derived from them toward electrocatalytic applications. ACS Appl. Mater. Interfaces 2018, 10, 34494–34501.

17

Xia, W.; Mahmood, A.; Liang, Z. B.; Zou, R. Q.; Guo, S. J. Earth-abundant nanomaterials for oxygen reduction. Angew. Chem., Int. Ed. 2016, 55, 2650–2676.

18

Nie, Y.; Li, L.; Wei, Z. D. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 2015, 44, 2168–2201.

19

Higgins, D.; Zamani, P.; Yu, A. P.; Chen, Z. W. The application of graphene and its composites in oxygen reduction electrocatalysis: A perspective and review of recent progress. Energy Environ. Sci. 2016, 9, 357–390.

20

Wu, K. L.; Chen, X.; Liu, S. J.; Pan, Y.; Cheong, W. C.; Zhu, W.; Cao, X.; Shen, R. A.; Chen, W. X.; Luo, J. et al. Porphyrin-like Fe-N4 sites with sulfur adjustment on hierarchical porous carbon for different rate-determining steps in oxygen reduction reaction. Nano Res. 2018, 11, 6260–6269.

21

Wang, J. L.; Liu, H.; Liu, Y.; Wang, W. H.; Sun, Q.; Wang, X. B.; Zhao, X. Y.; Hu, H.; Wu, M. B. Sulfur bridges between Co9S8 nanoparticles and carbon nanotubes enabling robust oxygen electrocatalysis. Carbon 2019, 144, 259–268.

22

Zhu, C. Z.; Li, H.; Fu, S. F.; Du, D.; Lin, Y. H. Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures. Chem. Soc. Rev. 2016, 45, 517–531.

23

Peng, H. J.; Huang, J. Q.; Zhao, M. Q.; Zhang, Q.; Cheng, X. B.; Liu, X. Y.; Qian, W. Z.; Wei, F. Nanoarchitectured graphene/CNT@porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithium-sulfur batteries. Adv. Funct. Mater. 2014, 24, 2772–2781.

24

He, W. H.; Wang, Y.; Jiang, C. H.; Lu, L. H. Structural effects of a carbon matrix in non-precious metal O2-reduction electrocatalysts. Chem. Soc. Rev. 2016, 45, 2396–2409.

25

Liu, G.; Niu, P.; Yin, L. C.; Cheng, H. M. α-sulfur crystals as a visible-light-active photocatalyst. J. Am. Chem. Soc. 2012, 134, 9070–9073.

26

Ma, G. Q.; Huang, F. F.; Wen, Z. Y.; Wang, Q. S.; Hong, X. H.; Jin, J.; Wu, X. W. Enhanced performance of lithium sulfur batteries with conductive polymer modified separators. J. Mater. Chem. A 2016, 4, 16968–16974.

27

Song, J. X.; Xu, T.; Gordin, M. L.; Zhu, P. Y.; Lv, D. P.; Jiang, Y. B.; Chen, Y. S.; Duan, Y. H.; Wang, D. H. Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries. Adv. Funct. Mater. 2014, 24, 1243–1250.

28

Huang, X. X.; Zhou, L. J.; Voiry, D.; Chhowalla, M.; Zou, X. X.; Asefa, T. Monodisperse mesoporous carbon nanoparticles from polymer/silica self-aggregates and their electrocatalytic activities. ACS Appl. Mater. Interfaces 2016, 8, 18891–18903.

29

Ji, L. W.; Rao, M. M.; Zheng, H. M.; Zhang, L.; Li, Y. C.; Duan, W. H.; Guo, J. H.; Cairns, E. J.; Zhang, Y. G. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J. Am. Chem. Soc. 2011, 133, 18522–18525.

30

Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L. F. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 2016, 1, 16132.

31

Chen, Y.; Lu, S.; Zhou, J.; Qin, W.; Wu, X. Synergistically assembled Li2S/ FWNTs@reduced graphene oxide nanobundle forest for free-standing high-performance Li2S cathodes. Adv. Funct. Mater. 2017, 27, 1700987.

32

Ji, L. W.; Rao, M. M.; Zheng, H. M.; Zhang, L.; Li, Y. C.; Duan, W. H.; Guo, J. H.; Cairns, E. J.; Zhang, Y. G. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J. Am. Chem. Soc. 2011, 133, 18522–5.

33

Beinert, H.; Holm, R. H.; Münck, E. Iron-sulfur clusters: nature's modular, multipurpose structures. Nature, 1997, 277, 653–659.

34

Zeng, S. Z.; Zeng, X. R.; Tu, W. X.; Huang, H. T.; Yu, L.; Yao, Y. C.; Jin, N. Z.; Zhang, Q.; Zou, J. Z. A universal strategy to prepare sulfur-containing polymer composites with desired morphologies for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 22002–22012.

35

Kim, H. W.; Ross, M. B.; Kornienko, N.; Zhang, L.; Guo, J. H.; Yang, P. D.; McCloskey, B. D. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nat. Catal. 2018, 1, 282–290.

36

Xin, S.; Gu, L.; Zhao, N. H.; Yin, Y. X.; Zhou, L. J.; Guo, Y. G.; Wan, L. J. Smaller sulfur molecules promise better lithium-sulfur batteries. J. Am. Chem. Soc. 2012, 134, 18510–18513.

37

Liu, R. L.; Shi, Y. F.; Wan, Y.; Meng, Y.; Zhang, F. Q.; Gu, D.; Chen, Z. X.; Tu, B.; Zhao, D. Y. Triconstituent co-assembly to ordered mesostructured polymer-silica and carbon-silica nanocomposites and large-pore mesoporous carbons with high surface areas. J. Am. Chem. Soc. 2006, 128, 11652–11662.

38

Wang, H. L.; Yang, Y.; Liang, Y. Y.; Robinson, J. T.; Li, Y. G.; Jackson, A.; Cui, Y.; Dai, H. J. Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 2011, 11, 2644–2647.

39

Xu, R.; Lu, J.; Amine, K. Progress in mechanistic understanding and characterization techniques of Li-S batteries. Adv. Energy Mater. 2015, 5, 1500408.

40

Fu, K.; Wang, Y.; Mao, L. C.; Yang, X. X.; Peng, W.; Jin, J. H.; Yang, S. L.; Li, G. Rational assembly of hybrid carbon nanotubes grafted on the carbon nanofibers as reliable and robust bifunctional catalyst for rechargeable zinc-air battery. J. Power Sources 2019, 421, 68–75.

41

Li, B. Q.; Zhao, C. X.; Liu, J. N.; Zhang, Q. Electrosynthesis of hydrogen peroxide synergistically catalyzed by atomic Co-Nx-C sites and oxygen functional groups in noble-metal-free electrocatalysts. Adv. Mater. 2019, 1808173.

42

Xie, J.; Li, B. Q.; Peng, H. J.; Song, Y. W.; Li, J. X.; Zhang, Z. W.; Zhang, Q. From supramolecular species to self-templated porous carbon and metal-doped carbon for oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2019, 58, 4963–4967.

43

Li, B. Q.; Zhao, C. X.; Chen, S. M.; Liu, J. N.; Chen, X.; Song, L.; Zhang, Q. Framework-porphyrin-derived single-atom bifunctional oxygen electrocatalysts and their applications in Zn-air batteries. Adv. Mater. 2019, 31, 1900592.

44

Evers, S.; Nazar, L. F. New approaches for high energy density lithium-sulfur battery cathodes. Acc. Chem. Res. 2013, 46, 1135–1143.

45

Krishnaveni, K.; Subadevi, R.; Raja, M.; PremKumar, T.; Sivakumar, M. Sulfur/PAN/acetylene black composite prepared by a solution processing technique for lithium-sulfur batteries. J. Appl. Polym. Sci. 2018, 135, 46598.

46

Zhao, S. Y.; Wang, K.; Zou, X. L.; Gan, L.; Du, H. D.; Xu, C. J.; Kang, F. Y.; Duan, W. H.; Li, J. Group VB transition metal dichalcogenides for oxygen reduction reaction and strain-enhanced activity governed by p-orbital electrons of chalcogen. Nano Res. 2019, 12, 925–930.

47

Jia, Q. Y.; Liang, W. T.; Bates, M. K.; Mani, P.; Lee, W.; Mukerjee, S. Activity descriptor identification for oxygen reduction on platinum-based bimetallic nanoparticles: In situ observation of the linear composition-strain-activity relationship. ACS Nano 2015, 9, 387–400.

48

Li, H.; Du, M. S.; Mleczko, M. J.; Koh, A. L.; Nishi, Y.; Pop, E.; Bard, A. J.; Zheng, X. L. Kinetic study of hydrogen evolution reaction over strained MoS2 with sulfur vacancies using scanning electrochemical microscopy. J. Am. Chem. Soc. 2016, 138, 5123–5129.

49

Lu, Z. Y.; Chen, G. X.; Siahrostami, S.; Chen, Z. H.; Liu, K.; Xie, J.; Liao, L.; Wu, T.; Lin, D. C.; Liu, Y. Y. et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 2018, 1, 156–162.

50

Chase, M. W. Jr. NIST-JANAF Thermochemical Tables, 4th ed.; American Chemical Society: Washington, DC, 1998.

Nano Research
Pages 2614-2622
Cite this article:
Chen G, Liu J, Li Q, et al. A direct H2O2 production based on hollow porous carbon sphere-sulfur nanocrystal composites by confinement effect as oxygen reduction electrocatalysts. Nano Research, 2019, 12(10): 2614-2622. https://doi.org/10.1007/s12274-019-2496-3
Topics:

739

Views

69

Crossref

N/A

Web of Science

67

Scopus

4

CSCD

Altmetrics

Received: 16 May 2019
Revised: 10 July 2019
Accepted: 27 July 2019
Published: 15 August 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return