Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
References
Show full outline
Hide outline
Review Article

Valleytronics in transition metal dichalcogenides materials

Yanping Liu1,2,§()Yuanji Gao1,§Siyu Zhang1Jun He1Juan Yu1,3Zongwen Liu4()
School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast ProcessCentral South University, 932 South Lushan RoadChangsha410083China
State Key Laboratory of High Performance Complex ManufacturingCentral South University, 932 South Lushan RoadChangsha410083China
School of Electronics and InformationHangzhou Dianzi University, 1158 Second Street, Xiasha College ParkHangzhou310018China
School of Chemical and Biomolecular EngineeringThe University of SydneyNSW2006Australia

§ Yanping Liu and Yuanji Gao contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Valley degree of freedom in the first Brillouin zone of Bloch electrons offers an innovative approach to information storage and quantum computation. Broken inversion symmetry together with the presence of time-reversal symmetry endows Bloch electrons non-zero Berry curvature and orbital magnetic moment, which contribute to the valley Hall effect and optical selection rules in valleytronics. Furthermore, the emerging transition metal dichalcogenides (TMDs) materials naturally become the ideal candidates for valleytronics research attributable to their novel structural, photonic and electronic properties, especially the direct bandgap and broken inversion symmetry in the monolayer. However, the mechanism of inter-valley relaxation remains ambiguous and the complicated manipulation of valley predominantly incumbers the realization of valleytronic devices. In this review, we systematically demonstrate the fundamental properties and tuning strategies (optical, electrical, magnetic and mechanical tuning) of valley degree of freedom, summarize the recent progress of TMD-based valleytronic devices. We also highlight the conclusion of present challenges as well as the perspective on the further investigations in valleytronics.

References

1

Wunderlich, J.; Park, B. G.; Irvine, A. C.; Zârbo, L. P.; Rozkotová, E.; Nemec, P.; Novák, V.; Sinova, J.; Jungwirth, T. Spin hall effect transistor. Science 2010, 330, 1801-1804.

2

Roche, S.; Åkerman, J.; Beschoten, B.; Charlier, J. C.; Chshiev, M.; Prasad Dash, S.; Dlubak, B.; Fabian, J.; Fert, A.; Guimarães, M. et al. Graphene spintronics: The E+uropean Flagship perspective. 2D Mater. 2015, 2, 030202.

3

Parkin, S. S. P.; Hayashi, M.; Thomas, L. Magnetic domain-wall racetrack memory. Science 2008, 320, 190-194.

4

Han, W.; Kawakami, R. K.; Gmitra, M.; Fabian, J. Graphene spintronics. Nat. Nanotechnol. 2014, 9, 794-807.

5

Gurram, M.; Omar, S.; Van Wees, B. J. Electrical spin injection, transport, and detection in graphene-hexagonal boron nitride van der Waals heterostructures: Progress and perspectives. 2D Mater. 2018, 5, 032004.

6

Feng, Y. P.; Shen, L.; Yang, M.; Wang, A. Z.; Zeng, M. G.; Wu, Q. Y.; Chintalapati, S.; Chang, C. R. Prospects of spintronics based on 2D materials. Wiley Interdiscip. Rev. : Comput. Mol. Sci. 2017, 7, e1313.

7

Dankert, A.; Dash, S. P. Electrical gate control of spin current in van der Waals heterostructures at room temperature. Nat. Commun. 2017, 8, 16093.

8

Cheng, L.; Wang, X. B.; Yang, W. F.; Chai, J. W.; Yang, M.; Chen, M. J.; Wu, Y.; Chen, X. X.; Chi, D. Z.; Goh, K. E. J. et al. Far out-of-equilibrium spin populations trigger giant spin injection in atomically thin MoS2. Nat. Phys. 2019, 15, 347-351.

9

Liu, Y. P.; Idzuchi, H.; Fukuma, Y.; Rousseau, O.; Otani, Y.; Lew, W. S. Spin injection properties in trilayer graphene lateral spin valves. Appl. Phys. Lett. 2013, 102, 033105.

10

Li, M. J.; Zhang, D.; Gao, Y. L.; Cao, C.; Long, M. Q. Half-metallicity and spin-polarization transport properties in transition-metal atoms single-edge-terminated zigzag α-graphyne nanoribbons. Org. Electron. 2017, 44, 168-175.

11

Zhu, Z. W.; Collaudin, A.; Fauqué, B.; Kang, W.; Behnia, K. Field-induced polarization of Dirac valleys in bismuth. Nat. Phys. 2012, 8, 89-94.

12

Yu, H. Y.; Cui, X. D.; Xu, X. D.; Yao, W. Valley excitons in two-dimensional semiconductors. Nat. Sci. Rev. 2015, 2, 57-70.

13

Xu, X. D.; Yao, W.; Xiao, D.; Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 2014, 10, 343-350.

14

Nebel, C. E. Valleytronics: Electrons dance in diamond. Nat. Mater. 2013, 12, 690-691.

15

Isberg, J.; Gabrysch, M.; Hammersberg, J.; Majdi, S.; Kovi, K. K.; Twitchen, D. J. Generation, transport and detection of valley-polarized electrons in diamond. Nat. Mater. 2013, 12, 760-764.

16

Gunlycke, D.; White, C. T. Graphene valley filter using a line defect. Phys. Rev. Lett. 2011, 106, 136806.

17

Guinea, F.; Katsnelson, M. I.; Geim, A. K. Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat. Phys. 2010, 6, 30-33.

18

Friesen, M.; Rugheimer, P.; Savage, D. E.; Lagally, M. G.; Van Der Weide, D. W.; Joynt, R.; Eriksson, M. A. Practical design and simulation of silicon-based quantum-dot qubits. Phys. Rev. B 2003, 67, 121301(R).

19

Sun, J. T.; Meng, S. The valley degree of freedom of an electron. Acta Phys. Sin. 2015, 64, 187301.

20

Liu, Y. P.; Lew, W. S.; Liu, Z. W. Observation of anomalous resistance behavior in bilayer graphene. Nanoscale Res. Lett. 2017, 12, 48.

21

Liu, Y. M.; Zhou, X. Y.; Zhou, M.; Long, M. Q.; Zhou, G. H. Electric field induced spin and valley polarization within a magnetically confined silicene channel. J. Appl. Phys. 2014, 116, 244312.

22

Xiao, J.; Zhao, M.; Wang, Y.; Zhang, X. Excitons in atomically thin 2D semiconductors and their applications. Nanophotonics 2017, 6, 1309-1328.

23

Schaibley, J. R.; Yu, H. Y.; Clark, G.; Rivera, P.; Ross, J. S.; Seyler, K. L.; Yao, W.; Xu, X. D. Valleytronics in 2D materials. Nat. Rev. Mater. 2016, 1, 16055.

24

Mak, K. F.; Xiao, D.; Shan, J. Light-valley interactions in 2D semiconductors. Nat. Photonics 2018, 12, 451-460.

25

Wang, J.; Long, M. Q.; Zhao, W. S.; Hu, Y.; Wang, G. F.; Chan, K. S. A valley and spin filter based on gapped graphene. J. Phys. : Condens. Matter 2016, 28, 285302.

26

Vitale, S. A.; Nezich, D.; Varghese, J. O.; Kim, P.; Gedik, N.; Jarillo-Herrero, P.; Xiao, D.; Rothschild, M. Valleytronics: Opportunities, challenges, and paths forward. Small 2018, 14, 1801483.

27

Wang, P.; Zhou, M.; Liu, G.; Liu, Y. M.; Long, M. Q.; Zhou, G. H. Spin- and valley-dependent transport properties for metal-silicene-metal junctions. Eur. Phys. J. B 2015, 88, 243.

28

Ye, J. L.; Niu, B. H.; Li, Y.; Li, T.; Zhang, X. H. Exciton valley dynamics in monolayer Mo1-xWxSe2 (x = 0, 0.5, 1). Appl. Phys. Lett. 2017, 111, 152106.

29

Zhang, Q. T.; Chan, K. S.; Long, M. Q. Nearly perfect valley filter in silicene. J. Phys. : Condens. Matter 2016, 28, 055301.

30

Zeng, H. L.; Dai, J. F.; Yao, W.; Xiao, D.; Cui, X. D. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 2012, 7, 490-493.

31

Rivera, P.; Yu, H. Y.; Seyler, K. L.; Wilson, N. P.; Yao, W.; Xu, X. D. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol. 2018, 13, 1004-1015.

32

Seyler, K. L.; Zhang, D.; Huang, B.; Linpeng, X. Y.; Wilson, N. P.; Taniguchi, T.; Watanabe, K.; Yao, W.; Xiao, D.; McGuire, M. A. et al. Valley manipulation by optically tuning the magnetic proximity effect in WSe2/CrI3 heterostructures. Nano Lett. 2018, 18, 3823-3828.

33

Mak, K. F.; He, K. L.; Shan, J.; Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 2012, 7, 494-498.

34

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.

35

Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109-162.

36

Xiao, D.; Yao, W.; Niu, Q. Valley-contrasting physics in graphene: Magnetic moment and topological transport. Phys. Rev. Lett. 2007, 99, 236809.

37

Xiao, D.; Chang, M. C.; Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 2010, 82, 1959-2007.

38

Chang, M. C.; Niu, Q. Berry phase, hyperorbits, and the Hofstadter spectrum: Semiclassical dynamics in magnetic Bloch bands. Phys. Rev. B 1996, 53, 7010-7023.

39

Gorbachev, R. V.; Song, J. C. W.; Yu, G. L.; Kretinin, A. V.; Withers, F.; Yao, W.; Mishchenko, A.; Grigorieva, I. V.; Novoselov, K. S.; Levitov, L. S. et al. Detecting topological currents in graphene superlattices. Science 2014, 346, 448-451.

40

Zhang, Z. W.; Chen, P.; Duan, X. D.; Zang, K. T.; Luo, J.; Duan, X. F. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 2017, 357, 788-792.

41

Xie, L. M. Two-dimensional transition metal dichalcogenide alloys: Preparation, characterization and applications. Nanoscale 2015, 7, 18392-18401.

42

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.

43

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

44

Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497-501.

45

Liu, Y. P.; Zhang, S. Y.; He, J.; Wang, Z. M.; Liu, Z. W. Recent progress in the fabrication, properties, and devices of heterostructures based on 2D materials. Nano-Micro Lett. 2019, 11, 13.

46

Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263-275.

47

Liu, Y. P.; Cao, L. K.; Zhong, J. H.; Yu, J.; He, J.; Liu, Z. W. Synthesis of bismuth selenide nanoplates by solvothermal methods and its stacking optical properties. J. Appl. Phys. 2019, 125, 035302.

48

Liu, Y. P.; Tom, K.; Zhang, X. W.; Lou, S.; Liu, Y.; Yao, J. Alloying effect on bright-dark exciton states in ternary monolayer MoxW1-xSe2. New J. Phys. 2017, 19, 073018.

49

Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 2016, 10, 216-226.

50

Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271-1275.

51

Cao, T.; Wang, G.; Han, W. P.; Ye, H. Q.; Zhu, C. R.; Shi, J. R.; Niu, Q.; Tan, P. H.; Wang, E. G.; Liu, B. L. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 2012, 3, 887.

52

High, A. A.; Novitskaya, E. E.; Butov, L. V.; Hanson, M.; Gossard, A. C. Control of exciton fluxes in an excitonic integrated circuit. Science 2008, 321, 229-231.

53

Mak, K. F.; He, K. L.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207-211.

54

Zhang, C. D.; Johnson, A.; Hsu, C. L.; Li, L. J.; Shih, C. K. Direct imaging of band profile in single layer MoS2 on graphite: Quasiparticle energy gap, metallic edge states, and edge band bending. Nano Lett. 2014, 14, 2443-2447.

55

Ross, J. S.; Wu, S. F.; Yu, H. Y.; Ghimire, N. J.; Jones, A. M.; Aivazian, G.; Yan, J. Q.; Mandrus, D. G.; Xiao, D.; Yao, W. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 2013, 4, 1474.

56

Liu, H. J.; Jiao, L.; Yang, F.; Cai, Y.; Wu, X. X.; Ho, W.; Gao, C. L.; Jia, J. F.; Wang, N.; Fan, H. et al. Dense network of one-dimensional midgap metallic modes in monolayer MoSe2 and their spatial undulations. Phys. Rev. Lett. 2014, 113, 066105.

57

Mitioglu, A. A.; Plochocka, P.; Jadczak, J. N.; Escoffier, W.; Rikken, G. L. J. A.; Kulyuk, L.; Maude, D. K. Optical manipulation of the exciton charge state in single-layer tungsten disulfide. Phys. Rev. B 2013, 88, 245403.

58

Zhu, B. R.; Chen, X.; Cui, X. D. Exciton binding energy of monolayer WS2. Sci. Rep. 2015, 5, 9218.

59

Jones, A. M.; Yu, H. Y.; Ghimire, N. J.; Wu, S. F.; Aivazian, G.; Ross, J. S.; Zhao, B; Yan, J. Q.; Mandrus, D. G.; Xiao, D. et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 2013, 8, 634-638.

60

He, K. L.; Kumar, N.; Zhao, L.; Wang, Z. F.; Mak, K. F.; Zhao, H.; Shan, J. Tightly bound excitons in monolayer WSe2. Phys. Rev. Lett. 2014, 113, 026803.

61

Liu, Y. P.; Tom, K.; Wang, X.; Huang, C. M.; Yuan, H. T.; Ding, H.; Ko, C.; Suh, J.; Pan, L.; Persson, K. A. et al. Dynamic control of optical response in layered metal chalcogenide nanoplates. Nano Lett. 2016, 16, 488-496.

62

Yamamoto, M.; Shimazaki, Y.; Borzenets, I. V.; Tarucha, S. Valley hall effect in two-dimensional hexagonal lattices. J. Phys. Soc. Jpn. 2015, 84, 121006.

63

Xiao, D.; Liu, G. B.; Feng, W. X.; Xu, X. D.; Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-Ⅵ dichalcogenides. Phys. Rev. Lett. 2012, 108, 196802.

64

Tong, W. Y; Duan, C. G. Electrical control of the anomalous valley Hall effect in antiferrovalley bilayers. npj Quantum Mater. 2017, 2, 47.

65

Mak, K. F.; McGill, K. L.; Park, J.; McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 2014, 344, 1489-1492.

66

Onga, M.; Zhang, Y. J.; Ideue, T.; Iwasa, Y. Exciton Hall effect in monolayer MoS2. Nat. Mater. 2017, 16, 1193-1197.

67

Wang, Y. L.; Cong, C. X.; Shang, J. Z.; Eginligil, M.; Jin, Y. Q.; Li, G.; Chen, Y.; Peimyoo, N.; Yu, T. Unveiling exceptionally robust valley contrast in AA- and AB-stacked bilayer WS2. Nanoscale Horiz. 2019, 4, 396-403.

68

Manca, M.; Glazov, M. M.; Robert, C.; Cadiz, F.; Taniguchi, T.; Watanabe, K.; Courtade, E.; Amand, T.; Renucci, P.; Marie, X. et al. Enabling valley selective exciton scattering in monolayer WSe2 through upconversion. Nat. Commun. 2017, 8, 14927.

69

Jiang, C. Y.; Xu, W. G.; Rasmita, A.; Huang, Z. M.; Li, K.; Xiong, Q. H.; Gao, W. B. Microsecond dark-exciton valley polarization memory in two-dimensional heterostructures. Nat. Commun. 2018, 9, 753.

70

Ye, Y.; Xiao, J.; Wang, H. L.; Ye, Z. L.; Zhu, H. Y.; Zhao, M.; Wang, Y.; Zhao, J. H.; Yin, X. B.; Zhang, X. Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide. Nat. Nanotechnol. 2016, 11, 598-602.

71

Wang, Z. F.; Chiu, Y. H.; Honz, K.; Mak, K. F.; Shan, J. Electrical tuning of interlayer exciton gases in WSe2 bilayers. Nano Lett. 2018, 18, 137-143.

72

Unuchek, D.; Ciarrocchi, A.; Avsar, A.; Watanabe, K.; Taniguchi, T.; Kis, A. Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature 2018, 560, 340-344.

73

Sundaram, R. S.; Engel, M.; Lombardo, A.; Krupke, R.; Ferrari, A. C.; Avouris, P.; Steiner, M. Electroluminescence in single layer MoS2. Nano Lett. 2013, 13, 1416-1421.

74

Ross, J. S.; Rivera, P.; Schaibley, J.; Lee-Wong, E.; Yu, H. Y.; Taniguchi, T.; Watanabe, K.; Yan, J. Q.; Mandrus, D.; Cobden, D. et al. Interlayer exciton optoelectronics in a 2D heterostructure p-n junction. Nano Lett. 2017, 17, 638-643.

75

Ross, J. S.; Klement, P.; Jones, A. M.; Ghimire, N. J.; Yan, J. Q.; Mandrus, D. G.; Taniguchi, T.; Watanabe, K.; Kitamura, K.; Yao, W. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nat. Nanotechnol. 2014, 9, 268-272.

76

Wu, S. F.; Ross, J. S.; Liu, G. B.; Aivazian, G.; Jones, A.; Fei, Z. Y.; Zhu, W. G.; Xiao, D.; Yao, W.; Cobden, D. et al. Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2. Nat. Phys. 2013, 9, 149-153.

77

Lee, J.; Mak, K. F.; Shan, J. Electrical control of the valley Hall effect in bilayer MoS2 transistors. Nat. Nanotechnol. 2016, 11, 421-425.

78

Stier, A. V.; McCreary, K. M.; Jonker, B. T.; Kono, J.; Crooker, S. A. Exciton diamagnetic shifts and valley Zeeman effects in monolayer WS2 and MoS2 to 65 Tesla. Nat. Commun. 2016, 7, 10643.

79

Nagler, P.; Ballottin, M. V.; Mitioglu, A. A.; Mooshammer, F.; Paradiso, N.; Strunk, C.; Huber, R.; Chernikov, A.; Christianen, P. C. M.; Schüller, C. et al. Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures. Nat. Commun. 2017, 8, 1551.

80

MacNeill, D.; Heikes, C.; Mak, K. F.; Anderson, Z.; Kormányos, A.; Zólyomi, V.; Park, J.; Ralph, D. C. Breaking of valley degeneracy by magnetic field in monolayer MoSe2. Phys. Rev. Lett. 2015, 114, 037401.

81

Cai, T. Y.; Yang, S. A.; Li, X.; Zhang, F.; Shi, J. R.; Yao, W.; Niu, Q. Magnetic control of the valley degree of freedom of massive Dirac fermions with application to transition metal dichalcogenides. Phys. Rev. B 2013, 88, 115140.

82

Aivazian, G.; Gong, Z. R.; Jones, A. M.; Chu, R. L.; Yan, J.; Mandrus, D. G.; Zhang, C. W.; Cobden, D.; Yao, W.; Xu, X. Magnetic control of valley pseudospin in monolayer WSe2. Nat. Phys. 2015, 11, 148-152.

83

Li, Y. L.; Ludwig, J.; Low, T.; Chernikov, A.; Cui, X.; Arefe, G.; Kim, Y. D.; Van Der Zande, A. M.; Rigosi, A.; Hill, H. M. et al. Valley splitting and polarization by the Zeeman effect in monolayer MoSe2. Phys. Rev. Lett. 2014, 113, 266804.

84

Srivastava, A.; Sidler, M.; Allain, A. V.; Lembke, D. S.; Kis, A.; Imamoğlu, A. Valley Zeeman effect in elementary optical excitations of monolayer WSe2. Nat. Phys. 2015, 11, 141-147.

85

Zhu, C. R.; Wang, G.; Liu, B. L.; Marie, X.; Qiao, X. F.; Zhang, X.; Wu, X. X.; Fan, H.; Tan, P. H.; Amand, T. et al. Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2. Phys. Rev. B 2013, 88, 121301.

86

Kim, S. J.; Choi, K.; Lee, B.; Kim, Y.; Hong, B. H. Materials for flexible, stretchable electronics: Graphene and 2D materials. Annu. Rev. Mater. Res. 2015, 45, 63-84.

87

He, K. L.; Poole, C.; Mak, K. F.; Shan, J. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett. 2013, 13, 2931-2936.

88

Conley, H. J.; Wang, B.; Ziegler, J. I.; Haglund, R. F. Jr.; Pantelides, S. T.; Bolotin, K. I. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 2013, 13, 3626-3630.

89

Akinwande, D.; Petrone, N.; Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 2014, 5, 5678.

90

Rivera, P.; Seyler, K. L.; Yu, H. Y.; Schaibley, J. R.; Yan, J. Q.; Mandrus, D. G.; Yao, W.; Xu, X. D. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 2016, 351, 688-691.

91

Zhang, C. D.; Chuu, C. P.; Ren, X. B.; Li, M. Y.; Li, L. J.; Jin, C. H.; Chou, M. Y.; Shin, C. K. Interlayer couplings, moire patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv. 2017, 3, e1601459.

92

Xu, W. S.; Kozawa, D.; Liu, Y.; Sheng, Y. W.; Wei, K.; Koman, V. B.; Wang, S. S.; Wang, X. C.; Jiang, T.; Strano, M. S. et al. Determining the optimized interlayer separation distance in vertical stacked 2D WS2: hBN: MoS2 heterostructures for exciton energy transfer. Small 2018, 14, 1703727.

93

Withers, F.; Del Pozo-Zamudio, O.; Mishchenko, A.; Rooney, A. P.; Gholinia, A.; Watanabe, K.; Taniguchi, T.; Haigh, S. J.; Geim, A. K.; Tartakovskii, A. I. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 2015, 14, 301-306.

94

Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.

95

Jin, C. H.; Ma, E. Y.; Karni, O.; Regan, E. C.; Wang, F.; Heinz, T. F. Ultrafast dynamics in van der Waals heterostructures. Nat. Nanotechnol. 2018, 13, 994-1003.

96

Hsu, W. T.; Lu, L. S.; Wu, P. H.; Lee, M. H.; Chen, P. J.; Wu, P. Y.; Chou, Y. C.; Jeng, H. T.; Li, L. J.; Chu, M. W. et al. Negative circular polarization emissions from WSe2/MoSe2 commensurate heterobilayers. Nat. Commun. 2018, 9, 1356.

97

Chen, H. L.; Wen, X. W.; Zhang, J.; Wu, T. M.; Gong, Y. J.; Zhang, X.; Yuan, J. T.; Yi, C. Y.; Lou, J.; Ajayan, P. M. et al. Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures. Nat. Commun. 2016, 7, 12512.

98

Cha, S.; Noh, M.; Kim, J.; Son, J.; Bae, H.; Lee, D.; Kim, H.; Lee, J.; Shin, H. S.; Sim, S. et al. Generation, transport and detection of valley- locked spin photocurrent in WSe2-graphene-Bi2Se3 heterostructures. Nat. Nanotechnol. 2018, 13, 910-914.

99

Kim, J.; Jin, C. H.; Chen, B.; Cai, H.; Zhao, T.; Lee, P.; Kahn, S.; Watanabe, K.; Taniguchi, T.; Tongay, S. et al. Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures. Sci. Adv. 2017, 3, e1700518.

100

Ceballos, F.; Bellus, M. Z.; Chiu, H. Y.; Zhao, H. Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure. Acs Nano 2014, 8, 12717-12724.

101

Baranowski, M.; Surrente, A.; Klopotowski, L.; Urban, J. M.; Zhang, N.; Maude, D. K.; Wiwatowski, K.; Mackowski, S.; Kung, Y. C.; Dumcenco, D. et al. Probing the interlayer exciton physics in a MoS2/MoSe2/MoS2 van der Waals heterostructure. Nano Lett. 2017, 17, 6360-6365.

102

Mai, C.; Barrette, A.; Yu, Y. F.; Semenov, Y. G.; Kim, K. W.; Cao, L. Y.; Gundogdu, K. Many-body effects in valleytronics: Direct measurement of valley lifetimes in single-layer MoS2. Nano Lett. 2014, 14, 202-206.

103

Moody, G.; Tran, K.; Lu, X. B.; Autry, T.; Fraser, J. M.; Mirin, R. P.; Yang, L.; Li, X. Q.; Silverman, K. L. Microsecond valley lifetime of defect-bound excitons in monolayer WSe2. Phys. Rev. Lett. 2018, 121, 057403.

104

Hsu, W. T.; Chen, Y. L.; Chen, C. H.; Liu, P. S.; Hou, T. H.; Li, L. J.; Chang, W. H. Optically initialized robust valley-polarized holes in monolayer WSe2. Nat. Commun. 2015, 6, 8963.

105

Rivera, P.; Schaibley, J. R.; Jones, A. M.; Ross, J. S.; Wu, S. F.; Aivazian, G.; Klement, P.; Seyler, K.; Clark, G.; Ghimire, N. J. et al. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nat. Commun. 2015, 6, 6242.

106

Wan, Y.; Xiao, J.; Li, J. Z.; Fang, X.; Zhang, K.; Fu, L.; Li, P.; Song, Z. G.; Zhang, H.; Wang, Y. L. et al. Epitaxial single-layer MoS2 on GaN with enhanced valley helicity. Adv. Mater. 2018, 30, 1703888.

107

Zhang, Y. J.; Oka, T.; Suzuki, R.; Ye, J. T.; Iwasa, Y. Electrically switchable chiral light-emitting transistor. Science 2014, 344, 725-728.

108

Yang, W. H.; Shang, J. Z.; Wang, J. P.; Shen, X. N.; Cao, B. C.; Peimyoo, N.; Zou, C. J.; Chen, Y.; Wang, Y. L.; Cong, C. X. et al. Electrically tunable valley-light emitting diode (vLED) based on CVD-grown monolayer WS2. Nano Lett. 2016, 16, 1560-1567.

109

Ciarrocchi, A.; Unuchek, D.; Avsar, A.; Watanabe, K.; Taniguchi, T.; Kis, A. Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures. Nat. Photonics 2019, 13, 131-136.

110

Tong, W. Y.; Gong, S. J.; Wan, X. G.; Duan, C. G. Concepts of ferrovalley material and anomalous valley Hall effect. Nat. Commun. 2016, 7, 13612.

Nano Research
Pages 2695-2711
Cite this article:
Liu Y, Gao Y, Zhang S, et al. Valleytronics in transition metal dichalcogenides materials. Nano Research, 2019, 12(11): 2695-2711. https://doi.org/10.1007/s12274-019-2497-2
Topics:
Metrics & Citations  
Article History
Copyright
Return