AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Spherical to truncated octahedral shape transformation of palladium nanocrystals driven by e-beam in aqueous solution

Yingying Jiang1,2( )Xiao Li1Xiaoming Ma1Haifeng Wang1Hui Zhang1Zheng Liu3Ze Zhang1Chuanhong Jin1( )
State Key Laboratory of Silicon Materials,School of Materials Science and Engineering, Zhejiang University,Hangzhou,310027,China;
Department of Chemistry,Zhejiang University,Hangzhou,310027,China;
Inorganic Functional Materials Research Institute,National Institute of Advanced Industrial Science and Technology (AIST),Nagoya,463-8560,Japan;
Show Author Information

Graphical Abstract

Abstract

The crystallographic shapes of nanocrystals play critical roles in determining their physical and chemical properties. Liquid phase synthesis serves as one of the most important approaches for preparing shape-controlled nanocrystals, therefore, understanding the formation mechanisms of the thermodynamic equilibrium structures of nanocrystals in liquid solution is important. Using in situ liquid cell transmission electron microscopy (TEM), we observe for the first time the shape transformation of individual palladium nanocrystals from energy unfavored spherical shapes into equilibrium truncated octahedrons in aqueous solution. Via quantitative analysis of the shape evolution dynamics of an individual Pd nanocrystal, we find that about 10% of nanocrystal atoms were relocated during the shape transformation. The mass transport is attributed to the synergetic effect of electron beam irradiation and water environment.

Electronic Supplementary Material

Video
12274_2019_2498_MOESM1_ESM.avi
12274_2019_2498_MOESM2_ESM.avi
12274_2019_2498_MOESM3_ESM.avi
Download File(s)
12274_2019_2498_MOESM4_ESM.pdf (3.7 MB)

References

1

Leenders, S. H. A. M.; Gramage-Doria, R.; De Bruin, B.; Reek, J. N. H. Transition metal catalysis in confined spaces. Chem. Soc. Rev. 2015, 44, 433–448.

2

Xia, Y. N.; Li, W. Y.; Cobley, C. M.; Chen, J. Y.; Xia, X. H.; Zhang, Q.; Yang, M. X.; Cho, E. C.; Brown, P. K. Gold nanocages: From synthesis to theranostic applications. Acc. Chem. Res. 2011, 44, 914–924.

3

Burda, C.; Chen, X. B.; Narayanan, R.; El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 2005, 105, 1025–1102.

4

Vendelbo, S. B.; Elkjær, C. F.; Falsig, H.; Puspitasari, I.; Dona, P.; Mele, L.; Morana, B.; Nelissen, B. J.; Van Rijn, R.; Creemer, J. F. et al. Visualization of oscillatory behaviour of Pt nanoparticles catalysing CO oxidation. Nat. Mater. 2014, 13, 884–890.

5

Tao, F. F.; Salmeron, M. In situ studies of chemistry and structure of materials in reactive environments. Science 2011, 331, 171–174.

6

Zhang, D. J.; Jin, C. H.; Li, Z. Y.; Zhang, Z.; Li, J. X. Oxidation behavior of cobalt nanoparticles studied by in situ environmental transmission electron microscopy. Sci. Bull. 2017, 62, 775–778.

7

Xia, Y. N.; Xia, X. H.; Peng, H. C. Shape-controlled synthesis of colloidal metal nanocrystals: Thermodynamic versus kinetic products. J. Am. Chem. Soc. 2015, 137, 7947–7966.

8

Peng, X. G. An essay on synthetic chemistry of colloidal nanocrystals. Nano Res. 2009, 2, 425–447.

9

Zhang, J.; Li, S. Z.; Wu, J. S.; Schatz, G. C.; Mirkin, C. A. Plasmon-mediated synthesis of silver triangular bipyramids. Angew. Chem., Int. Ed. 2009, 48, 7787–7791.

10

Chen, M.; Wu, B. H.; Yang, J.; Zheng, N. F. Small adsorbate-assisted shape control of Pd and Pt nanocrystals. Adv. Mater. 2012, 24, 862–879.

11

Nielsen, M. H.; Aloni, S.; De Yoreo, J. J. In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways. Science 2014, 345, 1158–1162.

12

Jiang, Y. Y.; Zhu, G. M.; Lin, F.; Zhang, H.; Jin. C. H.; Yuan, J.; Yang, D. R.; Zhang, Z. In situ study of oxidative etching of palladium nanocrystals by liquid cell electron microscopy. Nano Lett. 2014, 14, 3761–3765.

13

Tan, S. F.; Lin, G. H.; Bosman, M.; Mirsaidov, U.; Nijhuis, C. A. Real-time dynamics of galvanic replacement reactions of silver nanocubes and Au studied by liquid-cell transmission electron microscopy. ACS Nano 2016, 10, 7689–7695.

14

Ye, X. C.; Jones, M. R.; Frechette, L. B.; Chen, Q.; Powers, A. S.; Ercius, P.; Dunn, G.; Rotskoff, G. M.; Nguyen, S. C.; Adiga, V. P. et al. Single-particle mapping of nonequilibrium nanocrystal transformations. Science 2016, 354, 874–877.

15

Liao, H. G.; Zherebetskyy, D.; Xin, H. L.; Czarnik, C.; Ercius, P.; Elmlund, H.; Pan, M.; Wang, L. W.; Zheng, H. M. Facet development during platinum nanocube growth. Science 2014, 345, 916–919.

16

De Jonge, N.; Peckys, D. B.; Kremers, G. J.; Piston, D. W. Electron microscopy of whole cells in liquid with nanometer resolution. Proc. Natl. Acad. Sci. USA 2009, 106, 2159–2164.

17

Sutter, E. A.; Sutter, P. W. Determination of redox reaction rates and orders by in situ liquid cell electron microscopy of Pd and Au solution growth. J. Am. Chem. Soc. 2014, 136, 16865–16870.

18

Zhu, B. E.; Xu, Z.; Wang, C. L.; Gao, Y. Shape evolution of metal nanoparticles in water vapor environment. Nano Lett. 2016, 16, 2628–2632.

19

Ringe, E.; Van Duyne, R. P.; Marks, L. D. Wulff construction for alloy nanoparticles. Nano Lett. 2011, 11, 3399–3403.

20

Vitos, L.; Ruban, A. V.; Skriver, H. L.; Kollár, J. The surface energy of metals. Surf. Sci. 1998, 411, 186–202.

21

Galanakis, I.; Papanikolaou, N.; Dederichs, P. H. Applicability of the broken-bond rule to the surface energy of the fcc metals. Surf. Sci. 2002, 511, 1–12.

22

Zhang, J. M.; Ma, F.; Xu, K. W. Calculation of the surface energy of FCC metals with modified embedded-atom method. Appl. Surf. Sci. 2004, 229, 34–42.

23

Egerton, R. F.; McLeod, R.; Wang, F.; Malac, M. Basic questions related to electron-induced sputtering in the TEM. Ultramicroscopy 2010, 110, 991–997.

24

Schneider, N. M.; Norton, M. M.; Mendel, B. J.; Grogan, J. M.; Ross, F. M.; Bau, H. H. Electron-water interactions and implications for liquid cell electron microscopy. J. Phys. Chem. C 2014, 118, 22373–22382.

25

Gao, W. P.; Hou, Y. S.; Hood, Z. D.; Wang, X.; More, K.; Wu, R. Q.; Xia, Y. N.; Pan, X. Q.; Chi, M. F. Direct in situ observation and analysis of the formation of palladium nanocrystals with high-index facets. Nano Lett. 2018, 18, 7004–7013.

26

Liu, M. C.; Zheng, Y. Q.; Zhang, L.; Guo, L. J.; Xia, Y. N. Transformation of Pd nanocubes into octahedra with controlled sizes by maneuvering the rates of etching and regrowth. J. Am. Chem. Soc. 2013, 135, 11752–11755.

27

Jin, M. S.; Liu, H. Y.; Zhang, H.; Xie, Z. X.; Liu, J. Y.; Xia, Y. N. Synthesis of Pd nanocrystals enclosed by {100} facets and with sizes <10 nm for application in CO oxidation. Nano Res. 2011, 4, 83–91.

Nano Research
Pages 2623-2627
Cite this article:
Jiang Y, Li X, Ma X, et al. Spherical to truncated octahedral shape transformation of palladium nanocrystals driven by e-beam in aqueous solution. Nano Research, 2019, 12(10): 2623-2627. https://doi.org/10.1007/s12274-019-2498-1
Topics:

938

Views

3

Crossref

N/A

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 12 March 2019
Revised: 28 July 2019
Accepted: 30 July 2019
Published: 14 August 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return