AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Replacing PVP by macrocycle cucurbit[6]uril to cap sub-5 nm Pd nanocubes as highly active and durable catalyst for ethanol electrooxidation

Dongshuang WuMinna Cao( )Rong Cao( )
State Key Laboratory of Structural Chemistry,Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences,Fuzhou,350002,China;

Present address: Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan

Show Author Information

Graphical Abstract

Abstract

Pd nanocubes (NCs) enclosed by six {100} facets are fascinating model materials for both fundamental studies and practical applications. However, the only available method to prepare well-defined sub-10 nm Pd NCs was developed by Xia et al. more than 10 years ago, unavoidably using polyvinylpyrrolidone (PVP) polymer to prevent particle aggregation. The strongly adsorbed PVP extremely deteriorates the catalysts' efficiency because of the high coverage of accessible surface-active sites. Numerous efforts have been devoted to replacing PVP with weaker capping agents but with limited progress predominately due to the difficulties in tuning the growth kinetics of Pd NCs. For the first time, we report that macrocycle cucurbit[6]uril (CB[6]) can replace PVP in the synthesis of Pd NCs by dedicatedly controlling the growth parameters. CB[6] capped Pd NCs showed 1.1–1.5 times increased specific surface area compared to the surfactant-free commercial Pd catalysts. Moreover, X-ray photoelectron spectroscopy demonstrated the modified electronic structure of Pd NCs through the carbonyl group of CB[6]. Consequently, compared to the commercial catalysts, the obtained Pd NCs exhibited 7 times higher current density towards ethanol oxidation reaction. Remarkably, after 17 h of continuous work, it reduced deactivation by up to 1–4 orders of magnitude.

Electronic Supplementary Material

Download File(s)
12274_2019_2499_MOESM1_ESM.pdf (4.5 MB)

References

1

Deraedt, C.; Astruc, D. "Homeopathic" palladium nanoparticle catalysis of cross carbon-carbon coupling reactions. Acc. Chem. Res. 2014, 47, 494–503.

2

Zhang, H.; Jin, M. S.; Xiong, Y. J.; Lim, B.; Xia, Y. N. Shape-controlled synthesis of Pd nanocrystals and their catalytic applications. Acc. Chem. Res. 2013, 46, 1783–1794.

3

Bianchini, C.; Shen, P. K. Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem. Rev. 2009, 109, 4183–4206.

4

Wang, J. Y.; Cui, Y.; Wang, D. Design of hollow nanostructures for energy storage, conversion and production. Adv. Mater. 2018, 20, e1801993.

5

Gao, D. F.; Zhou, H.; Wang, J.; Miao, S.; Yang, F.; Wang, G. X.; Wang, J. G.; Bao, X. H. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J. Am. Chem. Soc. 2015, 137, 4288–4291.

6

Lim, B.; Jiang, M. J.; Tao, J.; Camargo, P. H. C.; Zhu, Y. M.; Xia, Y. N. Shape-controlled synthesis of Pd nanocrystals in aqueous solutions. Adv. Funct. Mater. 2009, 19, 189–200.

7

Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem., Int. Ed. 2008, 48, 60–103.

8

Wang, D. S.; Xie, T.; Li, Y. D. Nanocrystals: Solution-based synthesis and applications as nanocatalysts. Nano Res. 2009, 2, 30–46.

9

Chen, L.; Lu, L. L.; Zhu, H. L.; Chen, Y. G.; Huang, Y.; Li, Y. D.; Wang, L. Y. Improved ethanol electrooxidation performance by shortening Pd-Ni active site distance in Pd-Ni-P nanocatalysts. Nat. Commun. 2017, 8, 14136.

10

Yang, N. L.; Zhang, Z. C.; Chen, B.; Huang, Y.; Chen, J. Z.; Lai, Z. C.; Chen, Y.; Sindoro, M.; Wang, A. L.; Cheng, H. F. et al. Synthesis of ultrathin PdCu alloy nanosheets used as a highly efficient electrocatalyst for formic acid oxidation. Adv. Mater. 2017, 29, 1700769.

11

Yang, N. L.; Cheng, H. F.; Liu, X. Z.; Yun, Q. B.; Chen, Y.; Li, B.; Chen, B.; Zhang, Z. C.; Chen, X. P.; Lu, Q. P. et al. Amorphous/crystalline hetero-phase Pd nanosheets: One-pot synthesis and highly selective hydrogenation reaction. Adv. Mater. 2018, 30, e1803234.

12

Niu, W. X.; Zhang, L.; Xu, G. B. Shape-controlled synthesis of single-crystalline palladium nanocrystals. ACS Nano 2010, 4, 1987–1996.

13

Berhault, G.; Bausach, M.; Bisson, L.; Becerra, L.; Thomazeau, C.; Uzio, D. Seed-mediated synthesis of Pd nanocrystals: Factors influencing a kinetic- or thermodynamic-controlled growth regime. J. Phys. Chem. C. 2007, 111, 5915–5925.

14

Zhao, X.; Liu, H. J.; Li, A. Z.; Shen, Y. L.; Qu, J. H. Bromate removal by electrochemical reduction at boron-doped diamond electrode. Electrochim. Acta 2012, 62, 181–184.

15

Naresh, N.; Wasim, F. G. S.; Ladewig, B. P.; Neergat, M. Removal of surfactant and capping agent from Pd nanocubes (Pd-NCs) using tert-butylamine: Its effect on electrochemical characteristics. J. Mater. Chem. A 2013, 1, 8553–8559.

16

Rioux, R. M.; Song, H.; Grass, M.; Habas, S.; Niesz, K.; Hoefelmeyer, J. D.; Yang, P.; Somorjai, G. A. Monodisperse platinum nanoparticles of well-defined shape: Synthesis, characterization, catalytic properties and future prospects. Top. Catal. 2006, 39, 167–174.

17

Borodko, Y.; Lee, H. S.; Joo, S. H.; Zhang, Y. W.; Somorjai, G. Spectroscopic study of the thermal degradation of PVP-capped Rh and Pt nanoparticles in H2 and O2 environments. J. Phys. Chem. C 2010, 114, 1117–1126.

18

Shen, J.; Ziaei-azad, H.; Semagina, N. Is it always necessary to remove a metal nanoparticle stabilizer before catalysis? J. Mol. Catal. A: Chem. 2014, 391, 36–40.

19

Aliaga, C.; Park, J. Y.; Yamada, Y.; Lee, H. S.; Tsung, C. K.; Yang, P. D.; Somorjai, G. A. Sum frequency generation and catalytic reaction studies of the removal of organic capping agents from Pt nanoparticles by UV-ozone treatment. J. Phys. Chem. C 2009, 113, 6150–6155.

20

Zhao, Y. S.; Tang, H. J.; Yang, N. L.; Wang, D. Graphdiyne: Recent achievements in photo- and electrochemical conversion. Adv. Sci. 2018, 5, 1800959.

21

Zhao, Y. S.; Wan, J. W.; Yao, H. Y.; Zhang, L. J.; Lin, K. F.; Wang, L.; Yang, N. L.; Liu, D. B.; Song, L.; Zhu, J. et al. Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis. Nat. Chem. 2018, 10, 924–931.

22

Zhao, Y. S.; Yang, N. L.; Yao, H. Y.; Liu, D. B.; Song, L.; Zhu, J.; Li, S. Z.; Gu, L.; Lin, K. F.; Wang, D. Stereodefined codoping of sp-N and S atoms in few-layer graphdiyne for oxygen evolution reaction. J. Am. Chem. Soc. 2019, 141, 7240–7244.

23

Tauster, S. J.; Fung, S. C.; Baker, R. T. K.; Horsley, J. A. Strong interactions in supported-metal catalysts. Science 1981, 211, 1121–1125.

24

Xi, Z.; Erdosy, D. P.; Mendoza-Garcia, A.; Duchesne, P. N.; Li, J. R.; Muzzio, M.; Li, Q.; Zhang, P.; Sun, S. H. Pd nanoparticles coupled to WO2.72 nanorods for enhanced electrochemical oxidation of formic acid. Nano Lett. 2017, 17, 2727–2731.

25

Yao, S. Y.; Zhang, X.; Zhou, W.; Gao, R.; Xu, W. Q.; Ye, Y. F.; Lin, L. L.; Wen, X. D.; Liu, P.; Chen, B. B. et al. Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction. Science 2017, 357, 389–393.

26

Raza, F.; Yim, D.; Park, J. H.; Kim, H. I.; Jeon, S. J.; Kim, J. H. Structuring Pd nanoparticles on 2H-WS2 nanosheets induces excellent photocatalytic activity for cross-coupling reactions under visible light. J. Am. Chem. Soc. 2017, 139, 14767–14774.

27

Jackson, C.; Smith, G. T.; Inwood, D. W.; Leach, A. S.; Whalley, P. S.; Callisti, M.; Polcar, T.; Russell, A. E.; Levecque, P.; Kramer, D. Electronic metal-support interaction enhanced oxygen reduction activity and stability of boron carbide supported platinum. Nat. Commun. 2017, 8, 15802.

28

Gao, F.; Zhang, Y. P.; Song, P. P.; Wang, J.; Wang, C. Q.; Guo, J.; Du, Y. K. Self-template construction of sub-24 nm Pd-Ag hollow nanodendrites as highly efficient electrocatalysts for ethylene glycol oxidation. J. Power Sources 2019, 418, 186–192.

29

Zhang, Y. P.; Gao, F.; Song, P. P.; Wang, J.; Guo, J.; Shiraish, Y.; Du, Y. K. Glycine-assisted fabrication of N-doped graphene-supported uniform multipetal PtAg nanoflowers for enhanced ethanol and ethylene glycol oxidation. ACS Sustainable Chem. Eng. 2019, 7, 3176–3184.

30

Zhang, X. F.; Chang, L.; Yang, Z. J.; Shi, Y. N.; Long, C.; Han, J. Y.; Zhang, B. H.; Qiu, X. Y.; Li, G. D.; Tang, Z. Y. Facile synthesis of ultrathin metal-organic framework nanosheets for Lewis acid catalysis. Nano Res. 2019, 12, 437–440.

31

Long, C.; Li, X.; Guo, J.; Shi, Y. N.; Liu, S. Q.; Tang, Z. Y. Electrochemical reduction of CO2 over heterogeneous catalysts in aqueous solution: Recent progress and perspectives. Small Methods 2019, 3, 1800369.

32

Jin, M. S.; Zhang, H.; Xie, Z. X.; Xia, Y. N. Palladium nanocrystals enclosed by {100} and {111} facets in controlled proportions and their catalytic activities for formic acid oxidation. Energy Environ. Sci. 2012, 5, 6352–6357.

33

Wang, E. D.; Xu, J. B.; Zhao, T. S. Density functional theory studies of the structure sensitivity of ethanol oxidation on palladium surfaces. J. Phys. Chem. C 2010, 114, 10489–10497.

34

Jin, M. S.; Liu, H. Y.; Zhang, H.; Xie, Z. X.; Liu, J. Y.; Xia, Y. N. Synthesis of Pd nanocrystals enclosed by {100} facets and with sizes < 10 nm for application in CO oxidation. Nano Res. 2010, 4, 83–91.

35

Bardelang, D.; Udachin, K. A.; Leek, D. M.; Ripmeester, J. A. Highly symmetric columnar channels in metal-free cucurbit[n]uril hydrate crystals (n = 6, 8). CrystEngComm 2007, 9, 973–975.

36

Lee, J. W.; Samal, S.; Selvapalam, N.; Kim, H. J.; Kim, K. Cucurbituril homologues and derivatives: New opportunities in supramolecular chemistry. Acc. Chem. Res. 2003, 36, 621–630.

37

Lagona, J.; Mukhopadhyay, P.; Chakrabarti, S.; Isaacs, L. The cucurbit[n]uril family. Angew. Chem., Int. Ed. 2005, 44, 4844–4870.

38

Lü, J.; Lin, J. X.; Cao, M. N.; Cao, R. Cucurbituril: A promising organic building block for the design of coordination compounds and beyond. Coordin. Chem. Rev. 2013, 257, 1334–1356.

39

Barrow, S. J.; Kasera, S.; Rowland, M. J.; del Barrio, J.; Scherman, O. A. Cucurbituril-based molecular recognition. Chem. Rev. 2015, 115, 12320–12406.

40

Lee, T. C.; Scherman, O. A. Formation of dynamic aggregates in water by cucurbit[5]uril capped with gold nanoparticles. Chem. Commun. 2010, 46, 2438–2440.

41

de la Rica, R.; Velders, A. H. Biomimetic crystallization of Ag2S nanoclusters in nanopore assemblies. J. Am. Chem. Soc. 2011, 133, 2875–2877.

42

Yun, G.; Hassan, Z.; Lee, J.; Kim, J.; Lee, N. S.; Kim, N. H.; Baek, K.; Hwang, I.; Park, C. G.; Kim, K. Highly stable, water-dispersible metal-nanoparticle-decorated polymer nanocapsules and their catalytic applications. Angew. Chem., Int. Ed. 2014, 53, 6414–6418.

43

Kim, D.; Choi, J. K.; Kim, S. M.; Hwang, I.; Koo, J.; Choi, S.; Cho, S. H.; Kim, K.; Lee, I. S. Confined nucleation and growth of PdO nanocrystals in a seed-free solution inside hollow nanoreactor. ACS Appl. Mater. Interfaces 2017, 9, 29992–30001.

44

Cao, M. N.; Wu, D. S.; Gao, S. Y.; Cao, R. Platinum nanoparticles stabilized by cucurbit[6]uril with enhanced catalytic activity and excellent poisoning tolerance for methanol electrooxidation. Chem. —Eur. J. 2012, 18, 12978–12985.

45

You, H. H.; Wu, D. S.; Chen, Z. N.; Sun, F. F.; Zhang, H.; Chen, Z. H.; Cao, M. N.; Zhuang, W.; Cao, R. Highly active and stable water splitting in acidic media using a bifunctional iridium/cucurbit[6]uril catalyst. ACS Energy Lett. 2019, 4, 1301–1307.

46

Cao, M. N.; Wei, Y.; Gao, S. Y.; Cao, R. Synthesis of palladium nanocatalysts with cucurbit[n]uril as both a protecting agent and a support for Suzuki and Heck reactions. Catal. Sci. Technol. 2012, 2, 156–163.

47

Cao, M. N.; Lin, J. X.; Yang, H. X.; Cao, R. Facile synthesis of palladium nanoparticles with high chemical activity using cucurbit[6]uril as protecting agent. Chem. Commun. 2010, 46, 5088–5090.

48

Shen, C.; Ma, D.; Meany, B.; Isaacs, L.; Wang, Y. H. Acyclic cucurbit[n]uril molecular containers selectively solubilize single-walled carbon nanotubes in water. J. Am. Chem. Soc. 2012, 134, 7254–7257.

49

Ren, H.; Shao, H.; Zhang, L. J.; Guo, D.; Jin, Q.; Yu, R. B.; Wang, L.; Li, Y. L.; Wang, Y.; Zhao, H. J. et al. A new graphdiyne nanosheet/Pt nanoparticle-based counter electrode material with enhanced catalytic activity for dye-sensitized solar cells. Adv. Energy Mater. 2015, 5, 1500296.

50

Liu, M. C.; Zheng, Y. Q.; Zhang, L.; Guo, L. J.; Xia, Y. N. Transformation of Pd nanocubes into octahedra with controlled sizes by maneuvering the rates of etching and regrowth. J. Am. Chem. Soc. 2013, 135, 11752–11755.

51

Wang, X. X.; Yang, J. D.; Yin, H. J.; Song, R.; Tang, Z. Y. "Raisin bun"-like nanocomposites of palladium clusters and porphyrin for superior formic acid oxidation. Adv. Mater. 2013, 25, 2728–2732.

52

Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-Ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Eden Prairie, 1992.

53

Ruban, A.; Hammer, B.; Stoltze, P.; Skriver, H. L.; Nørskov, J. K. Surface electronic structure and reactivity of transition and noble metals. J. Mol. Catal. A Chem. 1997, 115, 421–429.

54

Hammer, B.; Morikawa, Y.; Norskov, J. K. Co chemisorption at metal surfaces and overlayers. Phys. Rev. Lett. 1996, 76, 2141–2144.

Nano Research
Pages 2628-2633
Cite this article:
Wu D, Cao M, Cao R. Replacing PVP by macrocycle cucurbit[6]uril to cap sub-5 nm Pd nanocubes as highly active and durable catalyst for ethanol electrooxidation. Nano Research, 2019, 12(10): 2628-2633. https://doi.org/10.1007/s12274-019-2499-0
Topics:

703

Views

15

Crossref

N/A

Web of Science

12

Scopus

2

CSCD

Altmetrics

Received: 30 May 2019
Revised: 10 July 2019
Accepted: 06 August 2019
Published: 14 August 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return