Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Few-layer two-dimensional (2D) materials usually have different (meta)-stable stacking patterns, which have distinct electronic and optical properties. Inspired by optical tweezers, we show that a laser with selected frequency can modify the generalized stacking-fault energy landscape of bilayer hexagonal boron nitride (BBN), by coupling to the slip-dependent dielectric response. Consequently, BBN can be reversibly and barrier-freely switched between its stacking patterns in a controllable way. We simulate the dynamics of the stacking transition with a simplified equation of motion and demonstrate that it happens at picosecond timescale. When one layer of BBN has a nearly-free surface boundary condition, BBN can be locked in its metastable stacking modes for a long time. Such a fast, reversible and non-volatile transition makes BBN a potential media for data storage and optical phase mask.
Guinea, F.; Castro Neto, A. H.; Peres, N. M. R. Electronic states and Landau levels in graphene stacks. Phys. Rev. B 2006, 73, 245426.
Aoki, M.; Amawashi, H. Dependence of band structures on stacking and field in layered graphene. Solid State Commun. 2007, 142, 123–127.
Craciun, M. F.; Russo, S.; Yamamoto, M.; Oostinga, J. B.; Morpurgo, A. F.; Tarucha S. Trilayer graphene is a semimetal with a gate-tunable band overlap. Nat. Nanotechnol. 2009, 4, 383–388.
Koshino, M. Interlayer screening effect in graphene multilayers with ABA and ABC stacking. Phys. Rev. B 2010, 81, 125304.
Bao, W.; Jing, L.; Velasco, J. Jr.; Lee, Y.; Liu, G.; Tran, D.; Standley, B.; Aykol, M.; Cronin, S. B.; Smirnov, D. et al. Stacking-dependent band gap and quantum transport in trilayer graphene. Nat. Phys. 2011, 7, 948–952.
Marom, N.; Bernstein, J.; Garel, J.; Tkatchenko, A.; Joselevich, E.; Kronik, L.; Hod, O. Stacking and registry effects in layered materials: The case of hexagonal boron nitride. Phys. Rev. Lett. 2010, 105, 046801.
Constantinescu, G.; Kuc, A.; Heine, T. Stacking in bulk and bilayer hexagonal boron nitride. Phys. Rev. Lett. 2013, 111, 036104.
Bourrellier, R.; Amato, M.; Galvão Tizei, L. H.; Giorgetti, C.; Gloter, A.; Heggie, M. I.; March, K.; Stéphan, O.; Reining, L.; Kociak, M. et al. Nanometric resolved luminescence in h-BN flakes: Excitons and stacking order. ACS Photonics 2014, 1, 857–862.
Wilson, J. A.; Yoffe, A. D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 1969, 18, 193–335.
Eda, G.; Fujita, T.; Yamaguchi, H.; Voiry, D.; Chen, M. W.; Chhowalla, M. Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano 2012, 6, 7311–7317.
Duerloo, K. A. N.; Li, Y.; Reed, E. J. Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun. 2014, 5, 4214.
Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.
Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.
Woods, C. R.; Britnell, L.; Eckmann, A.; Ma, R. S.; Lu, J. C.; Guo, H. M.; Lin, X.; Yu, G. L.; Cao, Y.; Gorbachev, R. V. et al. Commensurate-incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 2014, 10, 451–456.
Eckmann, A.; Park, J.; Yang, H. F.; Elias, D.; Mayorov, A. S.; Yu, G. L.; Jalil, R.; Novoselov, K. S.; Gorbachev, R. V.; Lazzeri, M. et al. Raman fingerprint of aligned graphene/h-BN superlattices. Nano Lett. 2013, 13, 5242–5246.
An, Y. P.; Zhang, M. J.; Wu, D. P.; Wang, T. X.; Jiao, Z. Y.; Xia, C. X.; Fu, Z. M.; Wang, K. The rectifying and negative differential resistance effects in graphene/h-BN nanoribbon heterojunctions. Phys. Chem. Chem. Phys. 2016, 18, 27976–27980.
Qian, X. F.; Liu, J. W.; Fu, L.; Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 2014, 346, 1344–1347.
Dean, C. R.; Wang, L.; Maher, P.; Forsythe, C.; Ghahari, F.; Gao, Y.; Katoch, J.; Ishigami, M.; Moon, P.; Koshino, M. et al. Hofstadter's butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 2013, 497, 598–602.
Cassabois, G.; Valvin, P.; Gil, B. Hexagonal boron nitride is an indirect bandgap semiconductor. Nat. Photonics 2016, 10, 262–266.
Vítek, V. Intrinsic stacking faults in body-centred cubic crystals. Philos. Mag. 1968, 18, 773–786.
Ogata, S.; Li, J.; Yip, S. Ideal pure shear strength of aluminum and copper. Science 2002, 298, 807–811.
Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864–B871.
Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138.
Warner, J. H.; Rümmeli, M. H.; Bachmatiuk, A.; Büchner, B. Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation. ACS Nano 2010, 4, 1299–1304.
Zhou, J.; Xu, H. W.; Li, Y. F.; Jaramillo, R.; Li, J. Opto-mechanics driven fast martensitic transition in two-dimensional materials. Nano Lett. 2018, 18, 7794–7800.
Cuscó, R.; Artús, L.; Edgar, J. H.; Liu, S.; Cassabois, G.; Gil, B. Isotopic effects on phonon anharmonicity in layered van der Waals crystals: Isotopically pure hexagonal boron nitride. Phys. Rev. B 2018, 97, 155435.
Wuttig, M.; Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater. 2007, 6, 824–832.
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.
Hedin, L. New method for calculating the one-particle green's function with application to the electron-gas problem. Phys. Rev. 1965, 139, A796–A823.
Hybertsen, M. S.; Louie, S. G. First-principles theory of quasiparticles: Calculation of band gaps in semiconductors and insulators. Phys. Rev. Lett. 1985, 55, 1418–1421.
Salpeter, E. E.; Bethe, H. A. A relativistic equation for bound-state problems. Phys. Rev. 1951, 84, 1232–1242.
Onida, G.; Reining, L.; Rubio, A. Electronic excitations: Density-functional versus many-body green's-function approaches. Rev. Mod. Phys. 2002, 74, 601–659.