AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Optomechanical control of stacking patterns of h-BN bilayer

Haowei Xu1Jian Zhou2Yifei Li3Rafael Jaramillo3Ju Li1,3( )
Department of Nuclear Science and Engineering,Massachusetts Institute of Technology,Cambridge, MA,02139,USA;
Center for Advancing Materials Performance from the Nanoscale,State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University,Xi'an,710049,China;
Department of Materials Science and Engineering,Massachusetts Institute of Technology,Cambridge, MA,02139,USA;
Show Author Information

Graphical Abstract

Abstract

Few-layer two-dimensional (2D) materials usually have different (meta)-stable stacking patterns, which have distinct electronic and optical properties. Inspired by optical tweezers, we show that a laser with selected frequency can modify the generalized stacking-fault energy landscape of bilayer hexagonal boron nitride (BBN), by coupling to the slip-dependent dielectric response. Consequently, BBN can be reversibly and barrier-freely switched between its stacking patterns in a controllable way. We simulate the dynamics of the stacking transition with a simplified equation of motion and demonstrate that it happens at picosecond timescale. When one layer of BBN has a nearly-free surface boundary condition, BBN can be locked in its metastable stacking modes for a long time. Such a fast, reversible and non-volatile transition makes BBN a potential media for data storage and optical phase mask.

Electronic Supplementary Material

Download File(s)
12274_2019_2500_MOESM1_ESM.pdf (1.8 MB)

References

1

Guinea, F.; Castro Neto, A. H.; Peres, N. M. R. Electronic states and Landau levels in graphene stacks. Phys. Rev. B 2006, 73, 245426.

2

Aoki, M.; Amawashi, H. Dependence of band structures on stacking and field in layered graphene. Solid State Commun. 2007, 142, 123–127.

3

Craciun, M. F.; Russo, S.; Yamamoto, M.; Oostinga, J. B.; Morpurgo, A. F.; Tarucha S. Trilayer graphene is a semimetal with a gate-tunable band overlap. Nat. Nanotechnol. 2009, 4, 383–388.

4

Koshino, M. Interlayer screening effect in graphene multilayers with ABA and ABC stacking. Phys. Rev. B 2010, 81, 125304.

5

Bao, W.; Jing, L.; Velasco, J. Jr.; Lee, Y.; Liu, G.; Tran, D.; Standley, B.; Aykol, M.; Cronin, S. B.; Smirnov, D. et al. Stacking-dependent band gap and quantum transport in trilayer graphene. Nat. Phys. 2011, 7, 948–952.

6

Marom, N.; Bernstein, J.; Garel, J.; Tkatchenko, A.; Joselevich, E.; Kronik, L.; Hod, O. Stacking and registry effects in layered materials: The case of hexagonal boron nitride. Phys. Rev. Lett. 2010, 105, 046801.

7

Constantinescu, G.; Kuc, A.; Heine, T. Stacking in bulk and bilayer hexagonal boron nitride. Phys. Rev. Lett. 2013, 111, 036104.

8

Bourrellier, R.; Amato, M.; Galvão Tizei, L. H.; Giorgetti, C.; Gloter, A.; Heggie, M. I.; March, K.; Stéphan, O.; Reining, L.; Kociak, M. et al. Nanometric resolved luminescence in h-BN flakes: Excitons and stacking order. ACS Photonics 2014, 1, 857–862.

9

Wilson, J. A.; Yoffe, A. D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 1969, 18, 193–335.

10

Eda, G.; Fujita, T.; Yamaguchi, H.; Voiry, D.; Chen, M. W.; Chhowalla, M. Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano 2012, 6, 7311–7317.

11

Duerloo, K. A. N.; Li, Y.; Reed, E. J. Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun. 2014, 5, 4214.

12

Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.

13

Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.

14

Woods, C. R.; Britnell, L.; Eckmann, A.; Ma, R. S.; Lu, J. C.; Guo, H. M.; Lin, X.; Yu, G. L.; Cao, Y.; Gorbachev, R. V. et al. Commensurate-incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 2014, 10, 451–456.

15

Eckmann, A.; Park, J.; Yang, H. F.; Elias, D.; Mayorov, A. S.; Yu, G. L.; Jalil, R.; Novoselov, K. S.; Gorbachev, R. V.; Lazzeri, M. et al. Raman fingerprint of aligned graphene/h-BN superlattices. Nano Lett. 2013, 13, 5242–5246.

16

An, Y. P.; Zhang, M. J.; Wu, D. P.; Wang, T. X.; Jiao, Z. Y.; Xia, C. X.; Fu, Z. M.; Wang, K. The rectifying and negative differential resistance effects in graphene/h-BN nanoribbon heterojunctions. Phys. Chem. Chem. Phys. 2016, 18, 27976–27980.

17

Qian, X. F.; Liu, J. W.; Fu, L.; Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 2014, 346, 1344–1347.

18

Dean, C. R.; Wang, L.; Maher, P.; Forsythe, C.; Ghahari, F.; Gao, Y.; Katoch, J.; Ishigami, M.; Moon, P.; Koshino, M. et al. Hofstadter's butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 2013, 497, 598–602.

19

Cassabois, G.; Valvin, P.; Gil, B. Hexagonal boron nitride is an indirect bandgap semiconductor. Nat. Photonics 2016, 10, 262–266.

20

Vítek, V. Intrinsic stacking faults in body-centred cubic crystals. Philos. Mag. 1968, 18, 773–786.

21

Ogata, S.; Li, J.; Yip, S. Ideal pure shear strength of aluminum and copper. Science 2002, 298, 807–811.

22

Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864–B871.

23

Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138.

24

Warner, J. H.; Rümmeli, M. H.; Bachmatiuk, A.; Büchner, B. Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation. ACS Nano 2010, 4, 1299–1304.

25

Zhou, J.; Xu, H. W.; Li, Y. F.; Jaramillo, R.; Li, J. Opto-mechanics driven fast martensitic transition in two-dimensional materials. Nano Lett. 2018, 18, 7794–7800.

26

Cuscó, R.; Artús, L.; Edgar, J. H.; Liu, S.; Cassabois, G.; Gil, B. Isotopic effects on phonon anharmonicity in layered van der Waals crystals: Isotopically pure hexagonal boron nitride. Phys. Rev. B 2018, 97, 155435.

27

Wuttig, M.; Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater. 2007, 6, 824–832.

28

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

29

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

30

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

31

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

32

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

33

Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.

34

Hedin, L. New method for calculating the one-particle green's function with application to the electron-gas problem. Phys. Rev. 1965, 139, A796–A823.

35

Hybertsen, M. S.; Louie, S. G. First-principles theory of quasiparticles: Calculation of band gaps in semiconductors and insulators. Phys. Rev. Lett. 1985, 55, 1418–1421.

36

Salpeter, E. E.; Bethe, H. A. A relativistic equation for bound-state problems. Phys. Rev. 1951, 84, 1232–1242.

37

Onida, G.; Reining, L.; Rubio, A. Electronic excitations: Density-functional versus many-body green's-function approaches. Rev. Mod. Phys. 2002, 74, 601–659.

Nano Research
Pages 2634-2639
Cite this article:
Xu H, Zhou J, Li Y, et al. Optomechanical control of stacking patterns of h-BN bilayer. Nano Research, 2019, 12(10): 2634-2639. https://doi.org/10.1007/s12274-019-2500-y
Topics:

864

Views

22

Crossref

N/A

Web of Science

19

Scopus

0

CSCD

Altmetrics

Received: 06 June 2019
Revised: 29 July 2019
Accepted: 06 August 2019
Published: 20 August 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return