AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High-throughput droplet microfluidic synthesis of hierarchical metal-organic framework nanosheet microcapsules

Songting Wu1Zhong Xin1Shicheng Zhao1( )Shengtong Sun2( )
Shanghai Key Laboratory of Multiphase Materials Chemical EngineeringSchool of Chemical Engineering, East China University of Science and Technology, 130 Meilong RoadShanghai200237China
Center for Advanced Low-dimension Materials, National Engineering Research Center for Dyeing and Finishing of TextilesDonghua University, 2999 North Renmin RoadShanghai201620China
Show Author Information

Graphical Abstract

Abstract

Using two-dimensional (2D) metal-organic framework (MOF) nanosheets as new building blocks to create more complex architectures at the mesoscopic/macroscopic scale has attracted extensive interest in recent years. Nevertheless, it remains a great challenge to assemble MOF nanosheets into hierarchical hollow structures so far. In this paper, we describe a successful example of hierarchical MOF nanosheet microcapsules, with precisely controlled sizes, produced on large scale within minutes with a continuous droplet microfluidic strategy. Following a reaction/diffusion growth mechanism, the microcapsule shells feature a continuous smooth inner layer and a porous outer layer. Such hierarchical structure enables the encapsulation of magnetite nanoparticles inside and loading of dense gold nanoparticles outside the microcapsules, which exhibit highly efficient heterogeneous catalytic activity and easy recyclability. The present microfluidic assembly method offers a new pathway for preparing hierarchical MOF nanosheet structures, with the potential for extension to the formation of other 2D nanosheets in general.

Electronic Supplementary Material

Download File(s)
12274_2019_2507_MOESM1_ESM.pdf (5.6 MB)

References

1

Zhao, M. T.; Huang, Y.; Peng, Y. W.; Huang, Z. Q.; Ma, Q. L.; Zhang, H. Two-dimensional metal-organic framework nanosheets: Synthesis and applications. Chem. Soc. Rev. 2018, 47, 6267-6295.

2

Han, B.; Ou, X. W.; Deng, Z. Q.; Song, Y.; Tian, C.; Deng, H.; Xu, Y. J.; Lin, Z. Nickel metal-organic framework monolayers for photoreduction of diluted CO2: Metal-node-dependent activity and selectivity. Angew. Chem., Int. Ed. 2018, 57, 16811-16815.

3

Rodenas, T.; Luz, I.; Prieto, G.; Seoane, B.; Miro, H.; Corma, A.; Kapteijn, F.; Llabrés i Xamena, F. X.; Gascon, J. Metal-organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 2015, 14, 48-55.

4

Campbell, M. G.; Liu, S. F.; Swager, T. M.; Dincă, M. Chemiresistive sensor arrays from conductive 2D metal-organic frameworks. J. Am. Chem. Soc. 2015, 137, 13780-13783.

5

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183-191.

6

Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263-275.

7

Chen, Y.; Fan, Z. X.; Zhang, Z. C.; Niu, W. X.; Li, C. L.; Yang, N. L.; Chen, B.; Zhang, H. Two-dimensional metal nanomaterials: Synthesis, properties, and applications. Chem. Rev. 2018, 118, 6409-6455.

8

Zhao, M. T.; Wang, Y. X.; Ma, Q. L.; Huang, Y.; Zhang, X.; Ping, J. F.; Zhang, Z. C.; Lu, Q. P.; Yu, Y. F.; Xu, H. et al. Ultrathin 2D metal-organic framework nanosheets. Adv. Mater. 2015, 27, 7372-7378.

9

Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225-6331.

10

Furukawa, S.; Reboul, J.; Diring, S.; Sumida, K.; Kitagawa, S. Structuring of metal-organic frameworks at the mesoscopic/macroscopic scale. Chem. Soc. Rev. 2014, 43, 5700-5734.

11

Xuan, W. M.; Zhu, C. F.; Liu, Y.; Cui, Y. Mesoporous metal-organic framework materials. Chem. Soc. Rev. 2012, 41, 1677-1695.

12

He, S.; Chen, Y. F.; Zhang, Z. C.; Ni, B.; He, W.; Wang, X. Competitive coordination strategy for the synthesis of hierarchical-pore metal-organic framework nanostructures. Chem. Sci. 2016, 7, 7101-7105.

13

Zhang, Z. C.; Chen, Y. F.; He, S.; Zhang, J. C.; Xu, X. B.; Yang, Y.; Nosheen, F.; Saleem, F.; He, W.; Wang, X. Hierarchical Zn/Ni-MOF-2 nanosheet-assembled hollow nanocubes for multicomponent catalytic reactions. Angew. Chem., Int. Ed. 2014, 126, 12725-12729.

14

Xia, H. C.; Zhang, J. N.; Yang, Z.; Guo, S. Y.; Guo, S. H.; Xu, Q. 2D MOF nanoflake-assembled spherical microstructures for enhanced supercapacitor and electrocatalysis performances. Nano-Mirco Lett. 2017, 9, 43.

15

Duan, J. J.; Chen, S.; Zhao, C. Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nat. Commun. 2017, 8, 15341.

16

Zheng, S. S.; Li, B.; Tang, Y. J.; Li, Q.; Xue, H. G.; Pang, H. Ultrathin nanosheet-assembled [Ni3(OH)2(PTA)2(H2O)4]·2H2O hierarchical flowers for high-performance electrocatalysis of glucose oxidation reactions. Nanoscale 2018, 10, 13270-13276.

17

Zhou, W.; Huang, D. D.; Wu, Y. P.; Zhao, J.; Wu, T.; Zhang, J.; Li, D. S.; Sun, C. H.; Feng, P. Y.; Bu, X. H. Stable hierarchical bimetal-organic nanostructures as highperformance electrocatalysts for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 4227-4231.

18

Sun, H.; Lian, Y. B.; Yang, C.; Xiong, L. K.; Qi, P. W.; Mu, Q. Q.; Zhao, X. H.; Guo, J.; Deng, Z.; Peng, Y. A hierarchical nickel-carbon structure templated by metal-organic frameworks for efficient overall water splitting. Energy Environ. Sci. 2018, 11, 2363-2371.

19

Cai, Z. X.; Wang, Z. L.; Kim, J.; Yamauchi, Y. Hollow functional materials derived from metal-organic frameworks: Synthetic strategies, conversion mechanisms, and electrochemical applications. Adv. Mater. 2019, 31, 1804903.

20

Zou, J. L.; Kim, F. Self-assembly of two-dimensional nanosheets induced by interfacial polyionic complexation. ACS Nano 2012, 6, 10606-10613.

21

Hong, J.; Char, K.; Kim, B. S. Hollow capsules of reduced graphene oxide nanosheets assembled on a sacrificial colloidal particle. J. Phys. Chem. Lett. 2010, 1, 3442-3445.

22

Wang, Y. W.; Yu, L.; Lou, X. W. Synthesis of highly uniform molybdenum-glycerate spheres and their conversion into hierarchical MoS2 hollow nanospheres for lithium-ion batteries. Angew. Chem., Int. Ed. 2016, 55, 7423-7426.

23

Shang, L. R.; Cheng, Y.; Zhao, Y. J. Emerging droplet microfluidics. Chem. Rev. 2017, 117, 7964-8040.

24

Ameloot, R.; Vermoortele, F.; Vanhove, W.; Roeffaers, M. B. J.; Sels, B. F.; De Vos, D. E. Interfacial synthesis of hollow metal-organic framework capsules demonstrating selective permeability. Nat. Chem. 2011, 3, 382-387.

25

Jeong, G. Y.; Ricco, R.; Liang, K.; Ludwig, J.; Kim, J. O.; Falcaro, P.; Kim, D. P. Bioactive MIL-88A framework hollow spheres via interfacial reaction in-droplet microfluidics for enzyme and nanoparticle encapsulation. Chem. Mater. 2015, 27, 7903-7909.

26

Faustini, M.; Kim, J.; Jeong, G. Y.; Kim, J. Y.; Moon, H. R.; Ahn, W. S.; Kim, D. P. Microfluidic approach toward continuous and ultrafast synthesis of metal-organic framework crystals and hetero structures in confined microdroplets. J. Am. Chem. Soc. 2013, 135, 14619-14626.

27

Witters, D.; Vergauwe, N.; Ameloot, R.; Vermeir, S.; De Vos, D.; Puers, R.; Sels, B.; Lammertyn, J. Digital microfluidic high-throughput printing of single metal-organic framework crystals. Adv. Mater. 2012, 24, 1316-1320.

28

Wang, Y.; Li, L. J.; Yan, L. T.; Gu, X.; Dai, P. C.; Liu, D. D.; Bell, J. G.; Zhao, G. M.; Zhao, X. B.; Thomas, K. M. Bottom-up fabrication of ultrathin 2D Zr metal-organic framework nanosheets through a facile continuous microdroplet flow reaction. Chem. Mater. 2018, 30, 3048-3059.

29

He, T.; Xu, X. B.; Ni, B.; Lin, H. F.; Li, C. Z.; Hu, W. P.; Wang, X. Metal-organic framework based microcapsules. Angew. Chem., Int. Ed. 2018, 130, 10305-10309.

30

Tan, J. C.; Cheetham, A. K. Mechanical properties of hybrid inorganic-organic framework materials: Establishing fundamental structure-property relationships. Chem. Soc. Rev. 2011, 40, 1059-1080.

31

Li, W. B.; Yang, Z. H.; Zhang, G. L.; Fan, Z.; Meng, Q.; Shen, C.; Gao, C. J. Stiff metal-organic framework-polyacrylonitrile hollow fiber composite membranes with high gas permeability. J. Mater. Chem. A 2014, 2, 2110-2118.

32

Liu, J. W.; Cheng, J.; Che, R. C.; Xu, J.; Liu, M. M.; Liu, Z. W. Synthesis and microwave absorption properties of yolk-shell microspheres with magnetic iron oxide cores and hierarchical copper silicate shells. ACS Appl. Mater. Interfaces 2013, 5, 2503-2509.

33

Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 1973, 241, 20-22.

34

Shah, R. K.; Shum, H. C.; Rowat, A. C.; Lee, D.; Agresti, J. J.; Utada, A. S.; Chu, L. Y.; Kim, J. W.; Fernandez-Nieves, A.; Martinez, C. J. et al. Designer emulsions using microfluidics. Mater. Today 2008, 11, 18-27.

35

Xu, Y. Nanofluidics: A new arena for materials science. Adv. Mater. 2018, 30, 1702419.

36

Tan, Z.; Chen, S. F.; Peng, X. S.; Zhang, L.; Gao, C. J. Polyamide membranes with nanoscale Turing structures for water purification. Science 2018, 360, 518-521.

37

Motoyama, S.; Makiura, R.; Sakata, O.; Kitagawa, H. Highly crystalline nanofilm by layering of porphyrin metal-organic framework sheets. J. Am. Chem. Soc. 2011, 133, 5640-5643.

38

Xu, G.; Yamada, T.; Otsubo, K.; Sakaida, S.; Kitagawa, H. Facile "Modular Assembly" for fast construction of a highly oriented crystalline MOF nanofilm. J. Am. Chem. Soc. 2012, 134, 16524-16527.

39

Yu, J.; Mu, C.; Yan, B. Y.; Qin, X. Y.; Shen, C.; Xue, H. G.; Pang, H. Nanoparticle/MOF composites: Preparations and applications. Mater. Horiz. 2017, 4, 557-569.

40

Chen, Y. Z.; Wang, Z. U.; Wang, H. W.; Lu, J. L.; Yu, S. H.; Jiang, H. L. Singlet oxygen-engaged selective photo-oxidation over Pt nanocrystals/porphyrinic MOF: The roles of photothermal effect and Pt electronic state. J. Am. Chem. Soc. 2017, 139, 2035-2044.

41

Yan, R.; Zhao, Y.; Yang, H.; Kang, X. J.; Wang, C.; Wen, L. L.; Lu, Z. D. Ultrasmall Au nanoparticles embedded in 2D mixed-ligand metal-organic framework nanosheets exhibiting highly efficient and size-selective catalysis. Adv. Funct. Mater. 2018, 28, 1802021.

42

Jiang, H. L.; Akita, T.; Ishida, T.; Haruta, M.; Xu, Q. Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal-organic framework. J. Am. Chem. Soc. 2011, 133, 1304-1306.

43

Wunder, S.; Polzer, F.; Lu, Y.; Mei, Y.; Ballauff, M. Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes. J. Phys. Chem. C 2010, 114, 8814-8820.

44

Ke, F.; Zhu, J. F.; Qiu, L. G.; Jiang, X. Controlled synthesis of novel Au@MIL-100(Fe) core-shell nanoparticles with enhanced catalytic performance. Chem. Commun. 2013, 49, 1267-1269.

Nano Research
Pages 2736-2742
Cite this article:
Wu S, Xin Z, Zhao S, et al. High-throughput droplet microfluidic synthesis of hierarchical metal-organic framework nanosheet microcapsules. Nano Research, 2019, 12(11): 2736-2742. https://doi.org/10.1007/s12274-019-2507-4
Topics:

820

Views

21

Crossref

N/A

Web of Science

26

Scopus

5

CSCD

Altmetrics

Received: 28 May 2019
Revised: 17 August 2019
Accepted: 27 August 2019
Published: 06 September 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return