AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Enhanced CH4 selectivity in CO2 photocatalytic reduction over carbon quantum dots decorated and oxygen doping g-C3N4

Qian Li1,2Songcan Wang3Zhuxing Sun4Qijun Tang1,2Yiqiu Liu1,2Lianzhou Wang3( )Haiqiang Wang1,2( )Zhongbiao Wu1,2
Key Laboratory of Environment Remediation and Ecological Health, Ministry of EducationCollege of Environmental and Resources Science, Zhejiang UniversityHangzhou310058China
Zhejiang Provincial Engineering Research Center of Industrial Boiler and Furnace Flue Gas Pollution ControlHangzhou311202China
Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and NanotechnologyThe University of Queensland, BrisbaneQLD4072Australia
School of Environmental Science and EngineeringShanghai Jiao Tong UniversityShanghai200240China
Show Author Information

Graphical Abstract

Abstract

Graphitic carbon nitride (g-C3N4, CN) exhibits inefficient charge separation, deficient CO2 adsorption and activation sites, and sluggish surface reaction kinetics, which have been recognized as the main barriers to its application in CO2 photocatalytic reduction. In this work, carbon quantum dot (CQD) decoration and oxygen atom doping were applied to CN by a facile one-step hydrothermal method. The incorporated CQDs not only facilitate charge transfer and separation, but also provide alternative CO2 adsorption and activation sites. Further, the oxygen-atom-doped CN (OCN), in which oxygen doping is accompanied by the formation of nitrogen defects, proves to be a sustainable H+ provider by facilitating the water dissociation and oxidation half-reactions. Because of the synergistic effect of the hybridized binary CQDs/OCN addressing the three challenging issues of the CN based materials, the performance of CO2 photocatalytic conversion to CH4 over CQDs/OCN-x (x represents the volume ratio of laboratory-used H2O2 (30 wt.%) in the mixed solution) is dramatically improved by 11 times at least. The hybrid photocatalyst design and mechanism proposed in this work could inspire more rational design and fabrication of effective photocatalysts for CO2 photocatalytic conversion with a high CH4 selectivity.

Electronic Supplementary Material

Download File(s)
12274_2019_2509_MOESM1_ESM.pdf (3 MB)

References

1

Zhou, H. L.; Qu, Y. Q.; Zeid, T.; Duan, X. F. Towards highly efficient photocatalysts using semiconductor nanoarchitectures. Energy Environ. Sci. 2012, 5, 6732-6743.

2

Xie, S. J.; Zhang, Q. H.; Liu, G. D.; Wang, Y. Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures. Chem. Commun. 2016, 52, 35-59.

3

Chang, X. X.; Wang, T.; Gong, J. L. CO2 photo-reduction: Insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 2016, 9, 2177-2196.

4

Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979, 277, 637-638.

5

Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem., Int. Ed. 2013, 52, 7372-7408.

6

Zhou, H.; Yan, R. Y.; Zhang, D.; Fan, T. X. Challenges and perspectives in designing artificial photosynthetic systems. Chem. —Eur. J. 2016, 22, 9870-9885.

7

Lu, L.; Wang, B.; Wang, S. M.; Shi, Z.; Yan, S. C.; Zou, Z. G. La2O3-modified LaTiO2N photocatalyst with spatially separated active sites achieving enhanced CO2 reduction. Adv. Funct. Mater. 2017, 27, 1702447.

8

White, J. L.; Baruch, M. F.; Pander Ⅲ, J. E.; Hu, Y.; Fortmeyer, I. C.; Park, J. E.; Zhang, T.; Liao, K.; Gu, J.; Yan, Y. et al. Light-driven heterogeneous reduction of carbon dioxide: Photocatalysts and photoelectrodes. Chem. Rev. 2015, 115, 12888-12935.

9

Sun, Z. X.; Wang, S. C.; Li, Q.; Lyu, M. Q.; Butburee, T.; Luo, B.; Wang, H. Q.; Fischer, J. M. T. A.; Zhang, C.; Wu, Z. B. et al. Enriching CO2 activation sites on graphitic carbon nitride with simultaneous introduction of electron-transfer promoters for superior photocatalytic CO2-to-fuel conversion. Adv. Sustain. Syst. 2017, 1, 1700003.

10

Li, M. L.; Zhang, L. X.; Wu, M. Y.; Du, Y. Y.; Fan, X. Q.; Wang, M.; Zhang, L. L.; Kong, Q. L.; Shi, J. L. Mesostructured CeO2/g-C3N4 nanocomposites: Remarkably enhanced photocatalytic activity for CO2 reduction by mutual component activations. Nano Energy 2016, 19, 145-155.

11

Low, J. X.; Yu, J. G.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A. A. Heterojunction photocatalysts. Adv. Mater. 2017, 29, 1601694.

12

Wang, H. L.; Zhang, L. S.; Chen, Z. G.; Hu, J. Q.; Li, S. J.; Wang, Z. H.; Liu, J. S.; Wang, X. C. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43, 5234-5244.

13

Dong, F.; Zhao, Z. W.; Xiong, T.; Ni, Z. L.; Zhang, W. D.; Sun, Y. J.; Ho, W. K. In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. ACS Appl. Mater. Interfaces 2013, 5, 11392-11401.

14

Zhang, H.; Zhao, L. X.; Geng, F. L.; Guo, L. H.; Wan, B.; Yang, Y. Carbon dots decorated graphitic carbon nitride as an efficient metal-free photocatalyst for phenol degradation. Appl. Catal. B: Environ. 2016, 180, 656-662.

15

Low, J. X.; Cheng, B.; Yu, J. G.; Jaroniec, M. Carbon-based two-dimensional layered materials for photocatalytic CO2 reduction to solar fuels. Energy Stor. Mater. 2016, 3, 24-35.

16

Huang, Y.; Liang, Y. L.; Rao, Y. F.; Zhu, D. D.; Cao, J. J.; Shen, Z. X.; Ho, W; Lee, S. C. Environment-friendly carbon quantum dots/ZnFe2O4 photocatalysts: Characterization, biocompatibility, and mechanisms for NO removal. Environ. Sci. Technol. 2017, 51, 2924-2933.

17

Chen, J. W.; Shi, J. W.; Wang, X.; Cui, H. J.; Fu, M. L. Recent progress in the preparation and application of semiconductor/graphene composite photocatalysts. Chin. J. Catal. 2013, 34, 621-640.

18

Yu, J. G.; Jin, J.; Cheng, B.; Jaroniec, M. A noble metal-free reduced graphene oxide-CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel. J. Mater. Chem. A 2014, 2, 3407-3416.

19

Liu, G.; Niu, P.; Sun, C. H.; Smith, S.; Chen, Z. G.; Lu, G. Q.; Cheng, H. M. Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J. Am. Chem. Soc. 2010, 132, 11642-11648.

20

Zhu, Y. P.; Ren, T. Z.; Yuan, Z. Y. Mesoporous phosphorus-doped g-C3N4 nanostructured flowers with superior photocatalytic hydrogen evolution performance. ACS Appl. Mater. Interfaces 2015, 7, 16850-16856.

21

Zeng, Y. X.; Liu, X.; Liu, C. B.; Wang, L. L.; Xia, Y. C.; Zhang, S. Q.; Luo, S. L.; Pei, Y. Scalable one-step production of porous oxygen-doped g-C3N4 nanorods with effective electron separation for excellent visible-light photocatalytic activity. Appl. Catal. B: Environ. 2018, 224, 1-9.

22

Fang, W. J.; Liu, J. Y.; Yu, L.; Jiang, Z.; Shangguan, W. F. Novel (Na, O) co-doped g-C3N4 with simultaneously enhanced absorption and narrowed bandgap for highly efficient hydrogen evolution. Appl. Catal. B: Environ. 2017, 209, 631-636.

23

Jiang, Y. B.; Sun, Z. Z.; Tang, C.; Zhou, Y. X.; Zeng, L.; Huang, L. M. Enhancement of photocatalytic hydrogen evolution activity of porous oxygen doped g-C3N4 with nitrogen defects induced by changing electron transition. Appl. Catal. B: Environ. 2019, 240, 30-38.

24

Wang, X. F.; Cheng, J. J.; Yu, H. G.; Yu, J. G. A facile hydrothermal synthesis of carbon dots modified g-C3N4 for enhanced photocatalytic H2-evolution performance. Dalton Trans. 2017, 46, 6417-6424.

25

Li, Q.; Sun, Z. X.; Wang, H. Q.; Wu, Z. B. Insight into the enhanced CO2 photocatalytic reduction performance over hollow-structured Bi-decorated g-C3N4 nanohybrid under visible-light irradiation. J. CO2 Util. 2018, 28, 126-136.

26

Wang, H. Q.; Sun, Z. X.; Li, Q.; Tang, Q. J.; Wu, Z. B. Surprisingly advanced CO2 photocatalytic conversion over thiourea derived g-C3N4 with water vapor while introducing 200-420 nm UV light. J. CO2 Util. 2016, 14, 143-151.

27

Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Müller, J. O.; Schlögl, R.; Carlsson, J. M. Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 2008, 18, 4893-4908.

28

Kang, Y. Y.; Yang, Y. Q.; Yin, L. C.; Kang, X. D.; Liu, G.; Cheng, H. M. An amorphous carbon nitride photocatalyst with greatly extended visible-light-responsive range for photocatalytic hydrogen generation. Adv. Mater. 2015, 27, 4572-4577.

29

Fu, J. W.; Zhu, B. C.; Jiang, C. J.; Cheng, B.; You, W.; Yu, J. G. Hierarchical porous O-doped g-C3N4 with enhanced photocatalytic CO2 reduction activity. Small 2017, 13, 1603938.

30

Kang, Y. Y.; Yang, Y. Q.; Yin, L. C.; Kang, X. D.; Wang, L. Z.; Liu, G.; Cheng, H. M. Selective breaking of hydrogen bonds of layered carbon nitride for visible light photocatalysis. Adv. Mater. 2016, 28, 6471-6477.

31

Niu, P.; Zhang, L. L.; Liu, G.; Cheng, H. M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 2012, 22, 4763-4770.

32

Huang, Z. F.; Song, J. J.; Pan, L.; Wang, Z. M.; Zhang, X. Q.; Zou, J. J.; Mi, W. B.; Zhang, X. W.; Wang, L. Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution. Nano Energy 2015, 12, 646-656.

33

Mirtchev, P.; Henderson, E. J.; Soheilnia, N.; Yip, C. M.; Ozin, G. A. Solution phase synthesis of carbon quantum dots as sensitizers for nanocrystalline TiO2 solar cells. J. Mater. Chem. 2012, 22, 1265-1269.

34

Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. Angew. Chem., Int. Ed. 2014, 53, 7281-7285.

35

Hu, Y. P.; Yang, J.; Jia, L.; Yu, J. S. Ethanol in aqueous hydrogen peroxide solution: Hydrothermal synthesis of highly photoluminescent carbon dots as multifunctional nanosensors. Carbon 2015, 93, 999-1007.

36

Zhao, L. X.; Di, F.; Wang, D. B.; Guo, L. H.; Yang, Y.; Wan, B.; Zhang, H. Chemiluminescence of carbon dots under strong alkaline solutions: A novel insight into carbon dot optical properties. Nanoscale 2013, 5, 2655-2658.

37

Hu, S. L.; Tian, R. X.; Wu, L. L.; Zhao, Q.; Yang, J. L.; Liu, J.; Cao, S. R. Chemical regulation of carbon quantum dots from synthesis to photocatalytic activity. Chem. —Asian J. 2013, 8, 1035-1041.

38

Li, J. H.; Shen, B.; Hong, Z. H.; Lin, B. Z.; Gao, B. F.; Chen, Y. L. A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity. Chem. Commun. 2012, 48, 12017-12019.

39

She, X. J.; Liu, L.; Ji, H. Y.; Mo, Z.; Li, Y. P.; Huang, L. Y.; Du, D. L.; Xu, H.; Li, H. M. Template-free synthesis of 2D porous ultrathin nonmetal-doped g-C3N4 nanosheets with highly efficient photocatalytic H2 evolution from water under visible light. Appl. Catal. B: Environ. 2016, 187, 144-153.

40

Liu, J. H.; Zhang, T. K.; Wang, Z. C.; Dawson, G.; Chen, W. Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J. Mater. Chem. 2011, 21, 14398-14401.

41

Qiu, P. X.; Xu, C. M.; Chen, H.; Jiang, F.; Wang, X.; Lu, R. F.; Zhang, X. R. One step synthesis of oxygen doped porous graphitic carbon nitride with remarkable improvement of photo-oxidation activity: Role of oxygen on visible light photocatalytic activity. Appl. Catal. B: Environ. 2017, 206, 319-327.

42

Bu, Y. Y.; Chen, Z. Y. Effect of oxygen-doped C3N4 on the separation capability of the photoinduced electron-hole pairs generated by O-C3N4@TiO2 with quasi-shell-core nanostructure. Electrochim. Acta 2014, 144, 42-49.

43

Li, H. J.; Sun, B. W.; Sui, L.; Qian, D. J.; Chen, M. Preparation of water-dispersible porous g-C3N4 with improved photocatalytic activity by chemical oxidation. Phys. Chem. Chem. Phys. 2015, 17, 3309-3315.

44

Yang, D. X.; Velamakanni, A.; Bozoklu, G.; Park, S; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice Jr, C. A. et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon 2009, 47, 145-152.

45

Wang, X. P.; Chen, Y. X.; Fu, M.; Chen, Z. H.; Huang, Q. L. Effect of high-voltage discharge non-thermal plasma on g-C3N4 in a plasma-photocatalyst system. Chin. J. Catal. 2018, 39, 1672-1682.

46

Li, H. T.; He, X. D.; Kang, Z. H.; Huang, H.; Liu, Y.; Liu, J. L.; Lian, S. Y.; Tsang, C. H. A.; Yang, X. B.; Lee, S. T. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem., Int. Ed. 2010, 49, 4430-4434.

47

Fusco, C.; Casiello, M.; Catucci, L.; Comparelli, R.; Cotugno, P.; Falcicchio, A.; Fracassi, F.; Margiotta, V.; Moliterni, A.; Petronella, F. et al. TiO2@PEI-grafted-MWCNTs hybrids nanocomposites catalysts for CO2 photoreduction. Materials 2018, 11, 307.

48

Ou, H. H.; Yang, P. J.; Lin, L. H.; Anpo, M.; Wang, X. C. Carbon nitride aerogels for the photoredox conversion of water. Angew. Chem., Int. Ed. 2017, 56, 10905-10910.

49

Szanyi, J.; Kwak, J. H. Dissecting the steps of CO2 reduction: 1. The interaction of CO and CO2 with γ-Al2O3: An in situ FTIR study. Phys. Chem. Chem. Phys. 2014, 16, 15117-15125.

50

Zhang, B.; Zhao, T. J.; Feng, W. J.; Liu, Y. X.; Wang, H. H.; Su, H.; Lv, L. B.; Li, X. B.; Chen, J. S. Polarized few-layer g-C3N4 as metal-free electrocatalyst for highly efficient reduction of CO2. Nano Res. 2018, 11, 2450-2459.

51

Li, X. C.; Wu, M.; Lai, Z. H.; He, F. Studies on nickel-based catalysts for carbon dioxide reforming of methane. Appl. Catal. A: Gen. 2005, 290, 81-86.

52

Ong, W. J.; Tan, L. L.; Chai, S. P.; Yong, S. T.; Mohamed, A. R. Surface charge modification via protonation of graphitic carbon nitride (g-C3N4) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/g-C3N4 nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane. Nano Energy 2015, 13, 757-770.

53

Zhao, Y. L.; Wei, Y. C.; Wu, X. X.; Zheng, H. L.; Zhao, Z.; Liu, J.; Li, J. M. Graphene-wrapped Pt/TiO2 photocatalysts with enhanced photogenerated charges separation and reactant adsorption for high selective photoreduction of CO2 to CH4. Appl. Catal. B: Environ. 2018, 226, 360-372.

54

Tang, Q. J.; Sun, Z. X.; Wang, P. L.; Li, Q.; Wang, H. Q.; Wu, Z. B. Enhanced CO2 photocatalytic reduction performance on alkali and alkaline earth metal ion-exchanged hydrogen titanate nanotubes. Appl. Surf. Sci. 2019, 463, 456-462.

55

Peng, Y. H.; Wang, L. B.; Luo, Q. Q.; Cao, Y.; Dai, Y. Z.; Li, Z. L.; Li, H. L.; Zheng, X. S.; Yan, W. S.; Yang, J. L. et al. Molecular-level insight into how hydroxyl groups boost catalytic activity in CO2 hydrogenation into methanol. Chem 2018, 4, 613-625.

56

Li, Y. F.; Jin, R. X.; Xing, Y.; Li, J. Q.; Song, S. Y.; Liu, X. C.; Li, M.; Jin, R. C. Macroscopic foam-like holey ultrathin g-C3N4 nanosheets for drastic improvement of visible-light photocatalytic activity. Adv. Energy Mater. 2016, 6, 1601273.

57

Fang, S.; Xia, Y.; Lv, K. L.; Li, Q.; Sun, J.; Li, M. Effect of carbon-dots modification on the structure and photocatalytic activity of g-C3N4. Appl. Catal. B: Environ. 2016, 185, 225-232.

58

Delgado, E. R.; Alves, L. A.; Verly, R. M.; De Lemos, L. R.; De Mesquita, J. P. Purification, selection, and partition coefficient of highly oxidized carbon dots in aqueous two-phase systems based on polymer-salt pairs. Langmuir 2017, 33, 12235-12243.

59

Hong, Y. Z.; Shi, J. Y.; Shi, W. D.; Fang, Z. Y.; Chen, R. J.; Huang, Y. Y. A facile and scalable route for synthesizing ultrathin carbon nitride nanosheets with efficient solar hydrogen evolution. Carbon 2018, 136, 160-167.

60

Wu, P.; Wang, J. R.; Zhao, J.; Guo, L. J.; Osterloh, F. E. Structure defects in g-C3N4 limit visible light driven hydrogen evolution and photovoltage. J. Mater. Chem. A 2014, 2, 20338-20344.

61

Dong, G. H.; Jacobs, D. L.; Zang, L.; Wang, C. Y. Carbon vacancy regulated photoreduction of NO to N2 over ultrathin g-C3N4 nanosheets. Appl. Catal. B: Environ. 2017, 218, 515-524.

62

Li, Q.; Gao, S.; Hu, J.; Wang, H. Q.; Wu, Z. B. Superior NOx photocatalytic removal over hybrid hierarchical Bi/BiOI with high non-NO2 selectivity: Synergistic effect of oxygen vacancies and bismuth nanoparticles. Catal. Sci. Technol. 2018, 8, 5270-5279.

63

Zhao, H. X.; Chen, X. Y.; Li, X. T.; Shen, C.; Qu, B. C.; Gao, J. S.; Chen, J. W.; Quan, X. Photoinduced formation of reactive oxygen species and electrons from metal oxide-silica nanocomposite: An EPR spin-trapping study. Appl. Surf. Sci. 2017, 416, 281-287.

64

Yin, W. J.; Bai, L. J.; Zhu, Y. Z.; Zhong, S. X.; Zhao, L. H.; Li, Z. Q.; Bai, S. Embedding metal in the interface of a p-n heterojunction with a stack design for superior Z-scheme photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 2016, 8, 23133-23142.

65

Putri, L. K.; Ng, B. J.; Ong, W. J.; Lee, H. W.; Chang, W. S.; Chai, S. P. Engineering nanoscale p-n junction via the synergetic dual-doping of p-type boron-doped graphene hybridized with n-type oxygen-doped carbon nitride for enhanced photocatalytic hydrogen evolution. J. Mater. Chem. A 2018, 6, 3181-3194.

66

Wu, J. C. S. Photocatalytic reduction of greenhouse gas CO2 to fuel. Catal. Surv. Asia 2009, 13, 30-40.

67

Xie, T. P.; Liu, Y.; Wang, H. Q.; Wu, Z. B. Layered MoSe2/Bi2WO6 composite with P-N heterojunctions as a promising visible-light induced photocatalyst. Appl. Surf. Sci. 2018, 444, 320-329.

68

Dimitrijevic, N. M.; Vijayan, B. K.; Poluektov, O. G.; Rajh, T.; Gray, K. A.; He, H. Y.; Zapol, P. Role of water and carbonates in photocatalytic transformation of CO2 to CH4 on titania. J. Am. Chem. Soc. 2011, 133, 3964-3971.

69

Rajalakshmi, K.; Jeyalakshmi, V.; Krishnamurthy, K. R.; Viswanathan, B. Photocatalytic reduction of carbon dioxide by water on titania: Role of photophysical and structural properties. Indian J. Chem. 2012, 51A, 411-419.

Nano Research
Pages 2749-2759
Cite this article:
Li Q, Wang S, Sun Z, et al. Enhanced CH4 selectivity in CO2 photocatalytic reduction over carbon quantum dots decorated and oxygen doping g-C3N4. Nano Research, 2019, 12(11): 2749-2759. https://doi.org/10.1007/s12274-019-2509-2
Topics:

902

Views

126

Crossref

N/A

Web of Science

125

Scopus

17

CSCD

Altmetrics

Received: 22 June 2019
Revised: 10 August 2019
Accepted: 27 August 2019
Published: 23 September 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return