AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Special interstitial route can transport nanoparticles to the brain bypassing the blood-brain barrier

Nan Hu1,2,3,§Xiaoli Shi1,2,§( )Qiang Zhang1,2Wentao Liu1,2Yuting Zhu1,2Yuqing Wang1,2Yi Hou4Yinglu Ji1Yupeng Cao1,2Qian Zeng1,2Zhuo Ao1,2Quanmei Sun1,2Xiaohan Zhou1,2Xiaochun Wu1Dong Han1,2( )
CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
Department of Traditional Chinese MedicineChengde Medical UniversityChengde066000China
Institute of ChemistryChinese Academy of SciencesBeijing100190China

§ Nan Hu and Xiaoli Shi contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Nowadays, nanoparticles (NPs) are considered to be ideal tools for bioimaging and drug delivery. Although increasing research has focused on NP biodistribution, transportation in the interstitial architecture has been neglected. The entire body is connected by the interstitial architecture, which can provide a long-range and direct pathway for NP biodistribution in a nonvascular system. In this study, we report that 10-nm gold NPs injected directly into the interstitial architecture of the tarsal tunnel of rats (intervaginal space injection (ISI)) were delivered to the brain without crossing the blood-brain barrier. Furthermore, NaGdF4 nanoparticles were used to explore the transportation route by magnetic resonance imaging. The results demonstrated that, after ISI, the NaGdF4 nanoparticles were transported through the perivascular interstitial space of the carotid arteries and brain vessels to the brain. This is a special nonvascular transportation route like a stream based on the interstitial architecture that provides an alternative pathway for NP biodistribution.

Electronic Supplementary Material

Video
12274_2019_2510_MOESM1_ESM.avi
Download File(s)
12274_2019_2510_MOESM2_ESM.pdf (1.7 MB)

References

1

Dreaden, E. C.; Mackey, M. A.; Huang, X. H.; Kang, B.; El-Sayed, M. A. Beating cancer in multiple ways using nanogold. Chem. Soc. Rev. 2011, 40, 3391-3404.

2

Brus, L. Noble metal nanocrystals: Plasmon electron transfer photochemistry and single-molecule Raman spectroscopy. Acc. Chem. Res. 2008, 41, 1742-1749.

3

Wijtmans, M.; Rosenthal, S. J.; Zwanenburg, B.; Porter, N. A. Visible light excitation of CdSe nanocrystals triggers the release of coumarin from cinnamate surface ligands. J. Am. Chem. Soc. 2006, 128, 11720-11726.

4

Wang, Y. H.; Song, S. Y.; Liu, J. H.; Liu, D. P.; Zhang, H. J. ZnO- functionalized upconverting nanotheranostic agent: Multi-modality imaging-guided chemotherapy with on-demand drug release triggered by pH. Angew. Chem., Int. Ed. 2015, 54, 536-540.

5

Khlebtsov, N.; Dyrkman, L. Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies. Chem. Soc. Rev. 2011, 40, 1647-1671.

6

Sonavane, G.; Tomoda, K.; Makino, K. Biodistribution of colloidal gold nanoparticles after intravenous administration: Effect of particle size. Colloids Surf. B Biointerfaces 2008, 66, 274-280.

7

De Jong, W. H.; Hagens, W. I.; Krystek, P.; Burger, M. C.; Sips, A. J. A. M.; Geertsma, R. E. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 2008, 29, 1912-1919.

8

Giljohann, D. A.; Seferos, D. S.; Daniel, W. L.; Massich, M. D.; Patel, P. C.; Mirkin, C. A. Gold nanoparticles for biology and medicine. Angew. Chem., Int. Ed. 2010, 49, 3280-3294.

9

Iliff, J. J.; Wang, M. H.; Liao, Y. H.; Plogg, B. A.; Peng, W. G.; Gundersen, G. A.; Benveniste, H.; Vates, G. E.; Deane, R., Goldman, S. A. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med. 2012, 4, 147ra111.

10

Morris, A. W. J.; Sharp, M. M.; Albargothy, N. J.; Fernandes, R.; Hawkes, C. A.; Verma, A.; Weller, R. O.; Carare, R. O. Vascular basement membranes as pathways for the passage of fluid into and out of the brain. Acta Neuropathol. 2016, 131, 725-736.

11

Jessen, N. A.; Munk, A. S. F.; Lundgaard, I.; Nedergaard, M. The glymphatic system: A beginner's guide. Neurochem. Res. 2015, 40, 2583-2599.

12

Venkatesh, B.; Morgan, T. J.; Cohen, J. Interstitium: The next diagnostic and therapeutic platform in critical illness. Crit. Care Med. 2010, 38, S630-S636.

13

Swartz, M. A.; Fleury, M. E. Interstitial flow and its effects in soft tissues. Annu. Rev. Biomed. Eng. 2007, 9, 229-256.

14

Shi, X. L.; Zhu, Y. T.; Hua, W. D.; Ji, Y. L.; Ha, Q.; Han, X. X.; Liu, Y.; Gao, J. W.; Zhang, Q.; Liu, S. D. et al. An in vivo study of the biodistribution of gold nanoparticles after intervaginal space injection in the tarsal tunnel. Nano Res. 2016, 9, 2097-2109.

15

Boisselier, E.; Astruc, D. Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 2009, 38, 1759-1782.

16

Yang, Y.; Rosenberg, G. A. Blood-brain barrier breakdown in acute and chronic cerebrovascular disease. Stroke 2011, 42, 3323-3328.

17

Li, H. Y.; Yang, C. Q.; Lu, K. Y.; Zhang, L. Y.; Yang, J. F.; Wang, F.; Liu, D. G.; Cui, D.; Sun, M. J.; Pang, J. X. et al. A long-distance fluid transport pathway within fibrous connective tissues in patients with ankle edema. Clin. Hemorheol. Microcirc. 2016, 63, 411-421.

18

Hu, N.; Cao, Y. P.; Ao, Z.; Han, X. X.; Zhang, Q.; Liu, W. T.; Liu, S. D.; Liao, F. L.; Han, D. Flow behavior of liquid metal in the connected fascial space: Intervaginal space injection in the rat wrist and mice with tumor. Nano Res. 2018, 11, 2265-2276.

19

Feng, J. T.; Wang, F.; Han, X. X.; Ao, Z.; Sun, Q. M.; Hua, W. D.; Chen, P. P.; Jing, T. W.; Li, H. Y.; Han, D. A "green pathway" different from simple diffusion in soft matter: Fast molecular transport within micro/nanoscale multiphase porous systems. Nano Res. 2014, 7, 434-442.

20

Han, X. X.; Li, H. Y.; Hua, W. D.; Dai, L. R.; Ao, Z.; Liao, F. L.; Han, D. Fluid in the tissue channels of vascular adventitia investigated by AFM and TEM. Clin. Hemorheol. Microcirc. 2017, 67, 173-182.

21

Kulik, T.; Kusano, Y.; Aronhime, S.; Sandler, A. L.; Winn, H. R. Regulation of cerebral vasculature in normal and ischemic brain. Neuropharmacology 2008, 55, 281-288.

22

Zhang, E. T.; Inman, C. B.; Weller, R. O. Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum. J. Anat. 1990, 170, 111-123.

23

Elder, A.; Gelein, R.; Silva, V.; Feikert, T.; Opanashuk, L.; Carter, J.; Potter, R.; Maynard, A.; Ito, Y.; Finkelstein, J. et al. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ. Health Perspect. 2006, 114, 1172-1178.

Nano Research
Pages 2760-2765
Cite this article:
Hu N, Shi X, Zhang Q, et al. Special interstitial route can transport nanoparticles to the brain bypassing the blood-brain barrier. Nano Research, 2019, 12(11): 2760-2765. https://doi.org/10.1007/s12274-019-2510-9
Topics:

824

Views

14

Crossref

N/A

Web of Science

14

Scopus

2

CSCD

Altmetrics

Received: 10 July 2019
Revised: 24 August 2019
Accepted: 27 August 2019
Published: 25 September 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return