AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Large-scale highly ordered periodic Au nano-discs/graphene and graphene/Au nanoholes plasmonic substrates for surface-enhanced Raman scattering

Yansheng LiuFeng Luo( )
IMDEA NanoscienceFaraday 9Ciudad Universitaria de CantoblancoMadrid28049Spain
Show Author Information

Graphical Abstract

Abstract

In this paper, the study of using masks to directly generate large area, highly ordered and periodical nanostructure has been exhibited. Periodic Au nano-discs(NDs) arrays have been fabricated on top of graphene by using holey Si3N4 mask which is directly fixed on top of graphene and Au metal is deposited through the holes in mask by thermal evaporation method under vacuum condition. This fabrication method provides an easy, fast and cost efficiency way to generate periodical nanostructure. Also, Au nanoholes(NHs) structure has been studied by using holey Si3N4 as a template. The surface-enhanced Raman scattering (SERS) sensitivities of periodical Au NDs/graphene and graphene/Au NHs hybrid structures have been systematically studied. The internal mechanisms could be explained by chemical mechanism effect of graphene and electromagnetic mechanism effect of metallic nano-structures. The enhancement factors have been systematically investigated by varying the diameter and the thickness of Au discs and Au NHs. Raman mappings of Au NDs with 2.5 μm diameter illustrate that the larger SERS enhancements exist in the rim of NDs which has good agreement with the electric field simulation result. The SERE enhancement factors of fluorescein obtained from Au NDs/graphene substrates shows an improvement factor of 500% in comparison of graphene substrate. The calculated SERS enhancement factors of graphene/Au NHs achieve 1, 200% in comparison of graphene/planar Au film substrate.

Electronic Supplementary Material

Download File(s)
12274_2019_2514_MOESM1_ESM.pdf (922.1 KB)

References

1

Liu, L.; Shao, M. W.; Cheng, L.; Zhuo, S. J.; Que, R. H.; Lee, S. T. Edge-enhanced Raman scattering effect from Au deposited nanoedge array. Appl. Phys. Lett. 2011, 98, 073114.

2

Schedin, F.; Lidorikis, E.; Lombardo, A.; Kravets, V. G.; Geim, A. K.; Grigorenko, A. N.; Novoselov, K. S.; Ferrari, A. C. Surface-enhanced Raman spectroscopy of graphene. ACS Nano 2010, 4, 5617-5626.

3

Xu, W. G.; Ling, X.; Xiao, J. Q.; Dresselhaus, M. S.; Kong, J.; Xu, H. X.; Liu, Z. F.; Zhang, J. Surface enhanced Raman spectroscopy on a flat graphene surface. Proc. Natl. Acad. Sci. USA 2012, 109, 9281-9286.

4

Reokrungruang, P.; Chatnuntawech, I.; Dharakul, T.; Bamrungsap, S. A simple paper-based surface enhanced Raman scattering (SERS) platform and magnetic separation for cancer screening. Sens. Actuators B: Chem. 2019, 285, 462-469.

5

Bamrungsap, S.; Treerattrakul, K. Development of SERS based biosensor for cancer screening. Asian J. Med. Biomed. 2018, 28.

6

Mosier-Boss, P. A. Review of SERS substrates for chemical sensing. Nanomaterials 2017, 7, 142.

7

Xu, S. C.; Jiang, S. Z.; Wang, J. H.; Wei, J.; Yue, W. W.; Ma, Y. Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering. Sens. Actuators B: Chem. 2016, 222, 1175-1183.

8

Nie, S. M.; Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275, 1102-1106.

9

Huang, X. H.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 2006, 128, 2115-2120.

10

Ling, X.; Xie, L. M.; Fang, Y.; Xu, H.; Zhang, H. L.; Kong, J.; Dresselhaus, M. S.; Zhang, J.; Liu, Z. F. Can graphene be used as a substrate for Raman enhancement?. Nano Lett. 2010, 10, 553-561.

11

Otto, A.; Mrozek, I.; Grabhorn, H.; Akemann, W. Surface-enhanced Raman scattering. J. Phys.: Condens. Matter 1992, 4, 1143-1212.

12

Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902-907.

13

Moser, J.; Barreiro, A.; Bachtold, A. Current-induced cleaning of graphene. Appl. Phys. Lett. 2007, 91, 163513.

14

Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 2008, 100, 016602.

15

Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308-1308.

16

Ren, W.; Fang, Y. X.; Wang, E. K. A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids. ACS Nano 2011, 5, 6425-6433.

17

He, S. J.; Liu, K. K.; Su, S.; Yan, J.; Mao, X. H.; Wang, D. F.; He, Y.; Li, L. J.; Song, S. P.; Fan, C. H. Graphene-based high-efficiency surface-enhanced Raman scattering-active platform for sensitive and multiplex DNA detection. Anal. Chem. 2012, 84, 4622-4627.

18

Chourpa, I.; Lei, F. H.; Dubois, P.; Manfait, M.; Sockalingum, G. D. Intracellular applications of analytical SERS spectroscopy and multispectral imaging. Chem. Soc. Rev. 2008, 37, 993-1000.

19

Jones, M. R.; Osberg, K. D.; Macfarlane, R. J.; Langille, M. R.; Mirkin, C. A. Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem. Rev. 2011, 111, 3736-3827.

20

Wang, P.; Xia, M.; Liang, O. W.; Sun, K.; Cipriano, A. F.; Schroeder, T.; Liu, H. N.; Xie, Y. H. Label-free SERS selective detection of dopamine and serotonin using graphene-Au nanopyramid heterostructure. Anal. Chem. 2015, 87, 10255-10261.

21

Mu, C.; Zhang, J. P.; Xu, D. S. Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering. Nanotechnology 2010, 21, 015604.

22

Du, Y. X.; Zhao, Y.; Qu, Y.; Chen, C. H.; Chen, C. M.; Chuang, C. H.; Zhu, Y. W. Enhanced light-matter interaction of graphene-gold nanoparticle hybrid films for high-performance SERS detection. J. Mater. Chem. C 2014, 2, 4683-4691.

23

Xu, W. G.; Xiao, J. Q.; Chen, Y. F.; Chen, Y. B.; Ling, X.; Zhang, J. Graphene-veiled gold substrate for surface-enhanced Raman spectroscopy. Adv. Mater. 2013, 25, 928-933.

24

Huang, Z. L.; Meng, G. W.; Huang, Q.; Yang, Y. J.; Zhu, C. H.; Tang, C. L. Improved SERS performance from Au nanopillar arrays by abridging the pillar tip spacing by Ag sputtering. Adv. Mater. 2010, 22, 4136-4139.

25

Sivashanmugan, K.; Liao, J. D.; Liu, B. H.; Yao, C. K. Focused-ion-beam-fabricated Au nanorods coupled with Ag nanoparticles used as surface-enhanced Raman scattering-active substrate for analyzing trace melamine constituents in solution. Anal. Chim. Acta 2013, 800, 56-64.

26

Sivashanmugan, K.; Liao, J. D.; Shao, P. L.; Liu, B. H.; Tseng, T. Y.; Chang, C. Y. Intense Raman scattering on hybrid Au/Ag nanoplatforms for the distinction of MMP-9-digested collagen type-Ⅰ fiber detection. Biosens. Bioelectron. 2015, 72, 61-70.

27

Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312-1314.

28

Wang, L. L.; Roitberg, A.; Meuse, C.; Gaigalas, A. K. Raman and FTIR spectroscopies of fluorescein in solutions. Spectrochim. Acta Part A: Mol. Biomol. Spectros. 2001, 57, 1781-1791.

29

Hildebrandt, P.; Stockburger, M. Surface enhanced resonance Raman study on fluorescein dyes. J. Raman Spectrosc. 1986, 17, 55-58.

30

Ray Ⅲ, K. G.; McCreery, R. L. Characterization of the surface carbonyl and hydroxyl coverage on glassy carbon electrodes using Raman spectroscopy. J. Electroanal. Chem. 1999, 469, 150-158.

31

Xu, W. G.; Mao, N. N.; Zhang, J. Graphene: a platform for surface-enhanced Raman spectroscopy. Small 2013, 9, 1206-1224.

32

Zhang, D. M.; Vangala, K.; Jiang, D. P.; Zou, S. G.; Pechan, T. Drop coating deposition Raman spectroscopy of fluorescein isothiocyanate labeled protein. Appl. Spectrosc. 2010, 64, 1078-1085.

33

Yu, Q. M.; Guan, P.; Qin, D.; Golden, G.; Wallace, P. M. Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays. Nano Lett. 2008, 8, 1923-1928.

34

Félidj, N.; Aubard, J.; Lévi, G.; Krenn, J. R.; Salerno, M.; Schider, G.; Lamprecht, B.; Leitner, A.; Aussenegg, F. R. Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering. Phys. Rev. B 2002, 65, 075419.

35

Liu, D. M.; Wang, Q. K.; Hu, J. Fabrication and characterization of highly ordered Au nanocone array-patterned glass with enhanced SERS and hydrophobicity. Appl. Surf. Sci. 2015, 356, 364-369.

36

Maurer, T.; Nicolas, R.; Lévêque, G.; Subramanian, P.; Proust, J.; Béal, J.; Schuermans, S.; Vilcot, J. P.; Herro, Z.; Kazan, M. et al. Enhancing LSPR sensitivity of Au gratings through graphene coupling to Au film. Plasmonics 2014, 9, 507-512.

37

Foucher, F.; Guimbretière, G.; Bost, N.; Westall, F. Petrographical and mineralogical applications of Raman mapping. In Raman Spectroscopy and Applications. Maaz, K., Ed.; IntechOpen: London, 2017; pp 163-180.

Nano Research
Pages 2788-2795
Cite this article:
Liu Y, Luo F. Large-scale highly ordered periodic Au nano-discs/graphene and graphene/Au nanoholes plasmonic substrates for surface-enhanced Raman scattering. Nano Research, 2019, 12(11): 2788-2795. https://doi.org/10.1007/s12274-019-2514-5
Topics:

685

Views

17

Crossref

N/A

Web of Science

18

Scopus

3

CSCD

Altmetrics

Received: 19 July 2019
Revised: 02 September 2019
Accepted: 03 September 2019
Published: 23 September 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return