Graphical Abstract

The surface-enhanced Raman spectroscopy (SERS) is a technique for the detection of analytes on the surface with an ultrahigh sensitivity down to the atomic-scale, yet the fabrication of SERS materials such as nanoparticles or arrays of coinage metals often involve multiple complex steps with the high cost and pollution, largely limiting the application of SERS. Here, we report a complex hierarchical metallic glassy (MG) nanostructure by simply replicating the surface microstructure of butterfly wings through vapor deposition technique. The MG nanostructure displays an excellent SERS effect and moreover, a superhydrophobicity and self-cleaning behavior. The SERS effect of the MG nanostructure is attributed to the intrinsic nanoscale structural heterogeneities on the MG surface, which provides a large number of hotspots for the localized electromagnetic field enhancement affirmed by the finite-difference time-domain (FDTD) simulation. Our works show that the MG could be a new potential SERS material with low cost and good durability, well extending the functional application of this kind of material.
Goldberg-Oppenheimer, P.; Mahajan, S.; Steiner, U. Hierarchical electrohydrodynamic structures for surface-enhanced Raman scattering. Adv. Mater. 2012, 24, OP175-OP180.
Sharma, B.; Frontiera, R. R.; Henry, A. I.; Ringe, E.; Van Duyne, R. P. SERS: Materials, applications, and the future. Mater. Today 2012, 15, 16-25.
Stiles, P. L.; Dieringer, J. A.; Shah, N. C.; Van Duyne, R. P. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 2008, 1, 601-626.
Ding, S. Y.; Yi, J.; Li, J. F.; Ren, B.; Wu, D. Y.; Panneerselvam, R.; Tian, Z. Q. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 2016, 1, 16021.
Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Wu, D. Y. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 2010, 464, 392-395.
Li, J. F.; Zhang, Y. J.; Rudnev, A. V.; Anema, J. R.; Li, S. B.; Hong, W. J.; Rajapandiyan, P.; Lipkowski, J.; Wandlowski, T.; Tian, Z. Q. Electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy: Correlating structural information and adsorption processes of pyridine at the Au(hkl) single crystal/solution interface. J. Am. Chem. Soc. 2015, 137, 2400-2408.
Mo, X.; Wu, Y. W.; Zhang, J. H.; Hang, T.; Li, M. Bioinspired multifunctional Au nanostructures with switchable adhesion. Langmuir 2015, 31, 10850-10858.
Oh, Y. J.; Jeong, K. H. Glass nanopillar arrays with nanogap-rich silver nanoislands for highly intense surface enhanced Raman scattering. Adv. Mater. 2012, 24, 2234-2237.
Wang, H. H.; Liu, C. Y.; Wu, S. B.; Liu, N. W.; Peng, C. Y.; Chan, T. H.; Hsu, C. F.; Wang, J. K.; Wang, Y. L. Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps. Adv. Mater. 2006, 18, 491-495.
Yang, X. Z.; Yu, H.; Guo, X.; Ding, Q. Q.; Pullerits, T.; Wang, R. M.; Zhang, G. Y.; Liang, W. J.; Sun, M. T. Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction. Mater. Today Energy 2017, 5, 72-78.
Kneipp, K.; Moskovits, M.; Kneipp, H. Surface-Enhanced Raman Scattering: Physics and Applications; Springer: Heidelberg, 2006.
Li, J. F.; Anema, J. R.; Wandlowski, T.; Tian, Z. Q. Dielectric shell isolated and graphene shell isolated nanoparticle enhanced Raman spectroscopies and their applications. Chem. Soc. Rev. 2015, 44, 8399-8409.
Ling, X.; Xie, L. M.; Fang, Y.; Xu, H.; Zhang, H. L.; Kong, J.; Dresselhaus, M. S.; Zhang, J.; Liu, Z. F. Can graphene be used as a substrate for Raman enhancement? Nano Lett. 2010, 10, 553-561.
Shan, Y. F.; Zheng, Z. H.; Liu, J. J.; Yang, Y.; Li, Z. Y.; Huang, Z. R.; Jiang, D. L. Niobium pentoxide: A promising surface-enhanced Raman scattering active semiconductor substrate. NPJ Comput. Mater. 2017, 3, 11.
Zhang, X.; Shi, C. S.; Liu, E. Z.; Li, J. J.; Zhao, N. Q.; He, C. N. Nitrogen-doped graphene network supported copper nanoparticles encapsulated with graphene shells for surface-enhanced Raman scattering. Nanoscale 2015, 7, 17079-17087.
Kumar, G.; Desai, A.; Schroers, J. Bulk metallic glass: The smaller the better. Adv. Mater. 2011, 23, 461-476.
Kumar, G.; Tang, H. X.; Schroers, J. Nanomoulding with amorphous metals. Nature 2009, 457, 868-873.
Wang, J. Q.; Liu, Y. H.; Chen, M. W.; Xie, G. Q.; Louzguine-Luzgin, D. V.; Inoue, A.; Perepezko, J. H. Rapid degradation of Azo dye by Fe-based metallic glass powder. Adv. Funct. Mater. 2012, 22, 2567-1570.
Liang, S. X.; Jia, Z.; Liu, Y. J.; Zhang, W. C.; Wang, W. M.; Lu J.; Zhang, L. C. Compelling rejuvenated catalytic performance in metallic glasses. Adv. Mater. 2018, 30, 1802764.
Hu, Y. C.; Wang, Y. Z.; Su, R.; Cao, C. R.; Li, F.; Sun, C. W.; Yang, Y.; Guan, P. F.; Ding, D. W.; Wang, Z. L. et al. A highly efficient and self-stabilizing metallic-glass catalyst for electrochemical hydrogen generation. Adv. Mater. 2016, 28, 10293-10297.
Tan, Y. W.; Gu, J. J.; Xu, L. H.; Zang, X. N.; Liu, D. X.; Zhang, W.; Liu, Q. L.; Zhu, S. M.; Su, H. L.; Feng, C. L. et al. High-density hotspots engineered by naturally piled-up subwavelength structures in three-dimensional copper butterfly wing scales for surface-enhanced Raman scattering detection. Adv. Funct. Mater. 2012, 22, 1578-1585.
Xu, B. B.; Zhang, Y. L.; Zhang, W. Y.; Liu, X. Q.; Wang, J. N.; Zhang, X. L.; Zhang, D. D.; Jiang, H. B.; Zhang, R.; Sun, H. B. Silver-coated rose petal: Green, facile, low-cost and sustainable fabrication of a SERS substrate with unique superhydrophobicity and high efficiency. Adv. Opt. Mater. 2013, 1, 56-60.
Qian, C.; Ni, C.; Yu, W. X.; Wu, W. G.; Mao, H. Y.; Wang, Y. F.; Xu, J. Highly-ordered, 3D petal-like array for surface-enhanced Raman scattering. Small 2011, 7, 1801-1806.
Chou, S. Y.; Yu, C. C.; Yen, Y. T.; Lin, K. T.; Chen, H. L.; Su, W. F. Romantic story or Raman scattering? Rose petals as ecofriendly, low-cost substrates for ultrasensitive surface-enhanced Raman scattering. Anal. Chem. 2015, 87, 6017-6024.
Mu, Z. D.; Zhao, X. W.; Xie, Z. Y.; Zhao, Y. J.; Zhong, Q. F.; Bo, L.; Gu, Z. Z. In situ synthesis of gold nanoparticles (AuNPs) in butterfly wings for surface enhanced Raman spectroscopy (SERS). J. Mater. Chem. B 2013, 1, 1607-1613.
Huang, J. A.; Zhang, Y. L.; Zhao, Y. Q.; Zhang, X. L.; Sun, M. L.; Zhang, W. J. Superhydrophobic SERS chip based on a Ag coated natural taro-leaf. Nanoscale 2016, 8, 11487-11493.
Tan, Y. W.; Gu, J. J.; Zang, X. N.; Xu, W.; Shi, K. C.; Xu, L. H.; Zhang, D. Versatile fabrication of intact three-dimensional metallic butterfly wing scales with hierarchical sub-micrometer structures. Angew. Chem. , Int. Ed. 2011, 50, 8307-8311.
Tanahashi, I.; Harada, Y. Silver nanoparticles deposited on TiO2-coated cicada and butterfly wings as naturally inspired SERS substrates. J. Mater. Chem. C 2015, 3, 5721-5726.
Zhang, Q. X.; Chen, Y. X.; Guo, Z.; Liu, H. L.; Wang, D. P.; Huang, X. J. Bioinspired multifunctional hetero-hierarchical micro/nanostructure tetragonal array with self-cleaning, anticorrosion, and concentrators for the SERS detection. ACS Appl. Mater. Interfaces 2013, 5, 10633-10642.
Liu, X. J.; Zong, C. H.; Ai, K. L.; He, W. H.; Lu, L. H. Engineering natural materials as surface-enhanced Raman spectroscopy substrates for in situ molecular sensing. ACS Appl. Mater. Interfaces 2012, 4, 6599-6608.
Zhu, C. H.; Meng, G. W.; Zheng, P.; Huang, Q.; Li, Z. B.; Hu, X. Y.; Wang, X. J.; Huang, Z. L.; Li, F. D.; Wu, N. Q. A hierarchically ordered array of silver-nanorod bundles for surface-enhanced Raman scattering detection of phenolic pollutants. Adv. Mater. 2016, 28, 4871-4876.
Kong, T. T.; Luo, G. Y.; Zhao, Y. J.; Liu, Z. Bioinspired superwettability micro/nanoarchitectures: Fabrications and applications. Adv. Funct. Mater. 2019, 29, 1808012.
Schmidt, M. S.; Hübner, J.; Boisen, A. Large area fabrication of leaning silicon nanopillars for surface enhanced Raman spectroscopy. Adv. Mater. 2012, 24, OP11-OP18.
Yang, L. B.; Liu, H. L.; Ma, Y. M.; Liu, J. H. Solvent-induced hot spot switch on silver nanorod enhanced Raman spectroscopy. Analyst 2012, 137, 1547-1549.
Wu, Y. W.; Hang, T.; Yu, Z. Y.; Gu, J. J.; Li, M. Quasi-periodical 3D hierarchical silver nanosheets with sub-10 nm nanogap applied as an effective and applicable SERS substrate. Adv. Mater. Interfaces 2015, 2, 1500359.
Maier, S. A.; Brongersma, M. L.; Kik, P. G.; Meltzer, S.; Requicha, A. A. G.; Atwater, H. A. Plasmonics—A route to nanoscale optical devices. Adv. Mater. 2001, 13, 1501-1505.
Willets, K. A.; Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267-297.
Li, X. H.; Chen, G. Y.; Yang, L. B.; Jin, Z.; Liu, J. H. Multifunctional Au-coated TiO2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection. Adv. Funct. Mater. 2010, 20, 2815-2824.
Xu, W. G.; Xiao, J. Q.; Chen, Y. F.; Chen, Y. B.; Ling, X.; Zhang, J. Graphene-veiled gold substrate for surface-enhanced Raman spectroscopy. Adv. Mater. 2013, 25, 928-933.
Hanske, C.; Sanz-Ortiz, M. N.; Liz-Marzán, L. M. Silica-coated plasmonic metal nanoparticles in action. Adv. Mater. 2018, 30, 1707003.
Yang, X. Z.; Li, J.; Zhao, Y. X.; Yang, J. H.; Zhou, L. Y.; Dai, Z. G.; Guo, X.; Mu, S. J.; Liu, Q. Z.; Jiang, C. M. et al. Self-assembly of Au@Ag core-shell nanocuboids into staircase superstructures by droplet evaporation. Nanoscale 2018, 10, 142-149.
Wagner, H.; Bedorf, D.; Küchemann, S.; Schwabe, M.; Zhang, B.; Arnold, W.; Samwer, K. Local elastic properties of a metallic glass. Nat. Mater. 2011, 10, 439-442.
Ye, J. C.; Lu, J.; Liu, C. T.; Wang, Q.; Yang, Y. Atomistic free-volume zones and inelastic deformation of metallic glasses. Nat. Mater. 2010, 9, 619-623.
Liu, Y. H.; Wang, D.; Nakajima, K.; Zhang, W.; Hirata, A.; Nishi, T.; Inoue, A.; Chen, M. W. Characterization of nanoscale mechanical heterogeneity in a metallic glass by dynamic force microscopy. Phys. Rev. Lett. 2011, 106, 125504.
Hwang, J. W.; Melgarejo, Z. H.; Kalay, Y. E.; Kalay, I.; Kramer, M. J.; Stone, D. S.; Voyles, P. M. Nanoscale structure and structural relaxation in Zr50Cu45Al5 bulk metallic glass. Phys. Rev. Lett. 2012, 108, 195505.
Miracle, D. B. A structural model for metallic glasses. Nat. Mater. 2004, 3, 697-702.
Sheng, H. W.; Liu, H. Z.; Cheng, Y. Q.; Wen, J.; Lee, P. L.; Luo, W. K.; Shastri, S. D.; Ma, E. Polyamorphism in a metallic glass. Nat. Mater. 2007, 6, 192-197.
Sheng, H. W.; Luo, W. K.; Alamgir, F. M.; Bai, J. M.; Ma, E. Atomic packing and short-to-medium-range order in metallic glasses. Nature 2006, 439, 419-425.