Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Aqueous rechargeable zinc-ion hybrid supercapacitors are considered to be a promising candidate for large-scale energy storage devices owing to their high safety, long life, and low price. In this paper, a nitrogen doped hierarchical porous carbon is evaluated as the cathode for aqueous rechargeable zinc-ion hybrid supercapacitors. Benefiting from the synergistic merits of excellent structural features of N-HPC and tiny zinc dendrite of Zn anode in ZnSO4 electrolyte, the zinc-ion hybrid supercapacitor exhibits excellent energy storage performance including high capacity of 136.8 mAh·g-1 at 0.1·Ag-1, high energy density of 191 Wh·kg-1, large power density of 3, 633.4 W·kg-1, and satisfactory cycling stability of up to 5, 000 cycles with a capacity retention of 90.9%. This work presents a new prospect of developing high-performance aqueous rechargeable zinc ion energy storage devices.
Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652-657.
Goodenough, J. B. Electrochemical energy storage in a sustainable modern society. Energy Environ. Sci. 2013, 7, 14-18.
Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928-935.
Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845-854.
Dubal, D. P.; Ayyad, O.; Ruiz, V.; Gómez-Romero, P. Hybrid energy storage: The merging of battery and supercapacitor chemistries. Chem. Soc. Rev. 2015, 44, 1777-1790.
Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243-3262.
Obrovac, M. N.; Chevrier, V. L. Alloy negative electrodes for Li-ion batteries. Chem. Rev. 2014, 114, 11444-11502.
Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367.
Ren, H.; Zhao, J.; Yang, L.; Liang, Q. H.; Madhavi, S.; Yan, Q. Y. Inverse opal manganese dioxide constructed by few-layered ultrathin nanosheets as high-performance cathodes for aqueous zinc-ion batteries. Nano Res. 2019, 12, 1347-1353.
Fang, G. Z.; Zhou, J.; Pan, A. Q.; Liang, S. Q. Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 2018, 3, 2480-2501.
Yang, Y. Q.; Tang, Y.; Liang, S. Q.; Wu, Z. X.; Fang, G. Z.; Cao, X. X.; Wang, C.; Lin, T. Q.; Pan, A. Q.; Zhou, J. Transition metal ion-preintercalated V2O5 as high-performance aqueous zinc-ion battery cathode with broad temperature adaptability. Nano Energy 2019, 61, 617-625.
Li, Y. G.; Gong, M.; Liang, Y. Y.; Feng, J.; Kim, J. E.; Wang, H. L.; Hong, G. S.; Zhang, B.; Dai, H. J. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nat. Commun. 2013, 4, 1805.
Bai, C.; Cai, F. S.; Wang, L. C.; Guo, S. Q.; Liu, X. Z.; Yuan, Z. H. A sustainable aqueous Zn-I2 battery. Nano Res. 2018, 11, 3548-3554.
Xu, C. J.; Li, B. H.; Du, H. D.; Kang, F. Y. Energetic zinc ion chemistry: The rechargeable zinc ion battery. Angew. Chem. , Int. Ed. 2012, 51, 933-935.
Kundu, D.; Adams, B. D.; Duffort, V.; Vajargah, S. H.; Nazar, L. F. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 2016, 1, 16119.
Zhang, N.; Cheng, F. Y.; Liu, Y. C.; Zhao, Q.; Lei, K. X.; Chen, C. C.; Liu, X. S.; Chen, J. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 2016, 138, 12894-12901.
Zhu, H. W.; Ge, J.; Peng, Y. C.; Zhao, H. Y.; Shi, L. A.; Yu, S. H. Dip-coating processed sponge-based electrodes for stretchable Zn-MnO2 batteries. Nano Res. 2018, 11, 1554-1562.
Li, Q.; Wei, T. Y.; Ma, K. X.; Yang, G. Z.; Wang, C. X. Boosting the cyclic stability of aqueous zinc-ion battery based on Al-doped V10O24·12H2O cathode materials. ACS Appl. Mater. Interfaces 2019, 11, 20888-20894.
Pan, H. L.; Shao, Y. Y.; Yan, P. F.; Cheng, Y. W.; Han, K. S.; Nie, Z. M.; Wang, C. M.; Yang, J. H.; Li, X. L.; Bhattacharya, P. et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 2016, 1, 16039.
Alfaruqi, M. H.; Islam, S.; Gim, J.; Song, J. J.; Kim, S.; Pham, D. T.; Jo, J.; Xiu, Z. L.; Mathew, V.; Kim, J. A high surface area tunnel-type α-MnO2 nanorod cathode by a simple solvent-free synthesis for rechargeable aqueous zinc-ion batteries. Chem. Phys. Lett. 2016, 650, 64-68.
Alfaruqi, M. H.; Gim, J.; Kim, S.; Song, J. J.; Jo, J.; Kim, S.; Mathew, V.; Kim, J. Enhanced reversible divalent zinc storage in a structurally stable α-MnO2 nanorod electrode. J. Power Sources 2015, 288, 320-327.
Lee, B.; Lee, H. R.; Kim, H.; Chung, K. Y.; Cho, B. W.; Oh, S. H. Elucidating the intercalation mechanism of zinc ions into α-MnO2 for rechargeable zinc batteries. Chem. Commun. 2015, 51, 9265-9268.
Aravindan, V.; Gnanaraj, J.; Lee, Y. S.; Madhavi, S. Insertion-type electrodes for nonaqueous Li-ion capacitors. Chem. Rev. 2014, 114, 11619-11635.
Li, B.; Dai, F.; Xiao, Q. F.; Yang, L.; Shen, J. M.; Zhang, C. M.; Cai, M. Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy Environ. Sci. 2016, 9, 102-106.
Jiao, Y. Z.; Zhang, H. T.; Zhang, H. L.; Liu, A.; Liu, Y. X.; Zhang, S. J. Highly bonded T-Nb2O5/rGO nanohybrids for 4 V quasi-solid state asymmetric supercapacitors with improved electrochemical performance. Nano Res. 2018, 11, 4673-4685.
Liao, X. B.; Zhao, Y. L.; Wang, J. H.; Yang, W.; Xu, L.; Tian, X. C.; Shuang, Y.; Owusu, K. A.; Yan, M. Y.; Mai, L. Q. MoS2/MnO2 heterostructured nanodevices for electrochemical energy storage. Nano Res. 2018, 11, 2083-2092.
Chen, S. H.; Wang, J.; Fan, L.; Ma, R. F.; Zhang, E. J.; Liu, Q.; Lu, B. G. An ultrafast rechargeable hybrid sodium-based dual-ion capacitor based on hard carbon cathodes. Adv. Energy Mater. 2018, 8, 1800140.
Li, B.; Zheng, J. S.; Zhang, H. Y.; Jin, L. M.; Yang, D. J.; Lv, H.; Shen, C.; Shellikeri, A.; Zheng, Y. R.; Gong, R. Q. et al. Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors. Adv. Mater. 2018, 30, 1705670.
Leng, K.; Zhang, F.; Zhang, L.; Zhang, T. F.; Wu, Y. P.; Lu, Y. H.; Huang, Y.; Chen, Y. S. Graphene-based Li-ion hybrid supercapacitors with ultrahigh performance. Nano Res. 2013, 6, 581-592.
Choudhary, N.; Li, C.; Moore, J.; Nagaiah, N.; Zhai, L.; Jung, Y.; Thomas, J. Asymmetric supercapacitor electrodes and devices. Adv. Mater. 2017, 29, 1605336.
Zheng, X. F.; Wang, H. E.; Wang, C.; Deng, Z.; Chen, L. H.; Li, Y.; Hasan, T.; Su, B. L. 3D interconnected macro-mesoporous electrode with self-assembled NiO nanodots for high-performance supercapacitor-like Li-ion battery. Nano Energy 2016, 22, 269-277.
Dong, S. Y.; Li, H. S.; Wang, J. J.; Zhang, X. G.; Ji, X. L. Improved flexible Li-ion hybrid capacitors: Techniques for superior stability. Nano Res. 2017, 10, 4448-4456.
Wang, H.; Wang, M.; Tang, Y. B. A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications. Energy Storage Mater. 2018, 13, 1-7.
Dong, L. B.; Ma, X. P.; Li, Y.; Zhao, L.; Liu, W. B.; Cheng, J. Y.; Xu, C. J.; Li, B. H.; Yang, Q. H.; Kang, F. Y. Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors. Energy Storage Mater. 2018, 13, 96-102.
Han, J. W.; Wang, K.; Liu, W. H.; Li, C.; Sun, X. Z.; Zhang, X.; An, Y. B.; Yi, S.; Ma, Y. W. Rational design of Nano-architecture composite hydrogel electrode towards high performance Zn-ion hybrid cell. Nanoscale 2018, 10, 13083-13091.
Yin, Y. L.; Liu, C. H.; Fan, S. S. A new type of secondary hybrid battery showing excellent performances. Nano Energy 2015, 12, 486-493.
Zhang, P. P.; Li, Y.; Wang, G.; Wang, F. X.; Yang, S.; Zhu, F.; Zhuang, X. D.; Schmidt, O. G.; Feng, X. L. Zn-ion hybrid micro-supercapacitors with ultrahigh areal energy density and long-term durability. Adv. Mater. 2019, 31, 1806005.
Wang, C. W.; O'Connell, M. J.; Chan, C. K. Facile one-pot synthesis of highly porous carbon foams for high-performance supercapacitors using template-free direct pyrolysis. Acs Appl. Mater. Interfaces 2015, 7, 8952-8960.
Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W. W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M. et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011, 332, 1537-1541.
Liu, P. G.; Wu, D. L.; Gao, Y.; Wang, T.; Tan, Y. Y.; Jia, D. Z. Reduced graphene oxide-coated mulberry-shaped α-Fe2O3 nanoparticles composite as high performance electrode material for supercapacitors. J. Alloys Compd. 2018, 738, 89-96.
Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235-246.
Arrigo, R.; Hävecker, M.; Wrabetz, S.; Blume, R.; Lerch, M.; McGregor, J.; Parrott, E. P. J.; Zeitler, J. A.; Gladden, L. F.; Knop-Gericke, A. et al. Tuning the acid/base properties of nanocarbons by functionalization via amination. J. Am. Chem. Soc. 2010, 132, 9616-9630.
Burke, A. Ultracapacitors: Why, how, and where is the technology. J. Power Sources 2000, 91, 37-50.
Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518-522.