AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Rational design of nitrogen doped hierarchical porous carbon for optimized zinc-ion hybrid supercapacitors

Penggao Liu1Yang Gao2Yangyang Tan3Weifang Liu1Yanping Huang1Jun Yan1 ( )Kaiyu Liu1( )
Hunan Provincial Key Laboratory of Chemical Power SourcesCollege of Chemistry and Chemical EngineeringCentral South UniversityChangsha410083China
Key Laboratory of Energy Materials ChemistryMinistry of EducationKey Laboratory of Advanced Functional MaterialsAutonomous RegionInstitute of Applied ChemistryXinjiang UniversityXinjiang830046China
College of Materials Science and EngineeringFuzhou UniversityFuzhou350108China
Show Author Information

Graphical Abstract

Abstract

Aqueous rechargeable zinc-ion hybrid supercapacitors are considered to be a promising candidate for large-scale energy storage devices owing to their high safety, long life, and low price. In this paper, a nitrogen doped hierarchical porous carbon is evaluated as the cathode for aqueous rechargeable zinc-ion hybrid supercapacitors. Benefiting from the synergistic merits of excellent structural features of N-HPC and tiny zinc dendrite of Zn anode in ZnSO4 electrolyte, the zinc-ion hybrid supercapacitor exhibits excellent energy storage performance including high capacity of 136.8 mAh·g-1 at 0.1·Ag-1, high energy density of 191 Wh·kg-1, large power density of 3, 633.4 W·kg-1, and satisfactory cycling stability of up to 5, 000 cycles with a capacity retention of 90.9%. This work presents a new prospect of developing high-performance aqueous rechargeable zinc ion energy storage devices.

Electronic Supplementary Material

Download File(s)
12274_2019_2521_MOESM1_ESM.pdf (2.5 MB)

References

1

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652-657.

2

Goodenough, J. B. Electrochemical energy storage in a sustainable modern society. Energy Environ. Sci. 2013, 7, 14-18.

3

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928-935.

4

Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845-854.

5

Dubal, D. P.; Ayyad, O.; Ruiz, V.; Gómez-Romero, P. Hybrid energy storage: The merging of battery and supercapacitor chemistries. Chem. Soc. Rev. 2015, 44, 1777-1790.

6

Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243-3262.

7

Obrovac, M. N.; Chevrier, V. L. Alloy negative electrodes for Li-ion batteries. Chem. Rev. 2014, 114, 11444-11502.

8

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367.

9

Ren, H.; Zhao, J.; Yang, L.; Liang, Q. H.; Madhavi, S.; Yan, Q. Y. Inverse opal manganese dioxide constructed by few-layered ultrathin nanosheets as high-performance cathodes for aqueous zinc-ion batteries. Nano Res. 2019, 12, 1347-1353.

10

Fang, G. Z.; Zhou, J.; Pan, A. Q.; Liang, S. Q. Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 2018, 3, 2480-2501.

11

Yang, Y. Q.; Tang, Y.; Liang, S. Q.; Wu, Z. X.; Fang, G. Z.; Cao, X. X.; Wang, C.; Lin, T. Q.; Pan, A. Q.; Zhou, J. Transition metal ion-preintercalated V2O5 as high-performance aqueous zinc-ion battery cathode with broad temperature adaptability. Nano Energy 2019, 61, 617-625.

12

Li, Y. G.; Gong, M.; Liang, Y. Y.; Feng, J.; Kim, J. E.; Wang, H. L.; Hong, G. S.; Zhang, B.; Dai, H. J. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nat. Commun. 2013, 4, 1805.

13

Bai, C.; Cai, F. S.; Wang, L. C.; Guo, S. Q.; Liu, X. Z.; Yuan, Z. H. A sustainable aqueous Zn-I2 battery. Nano Res. 2018, 11, 3548-3554.

14

Xu, C. J.; Li, B. H.; Du, H. D.; Kang, F. Y. Energetic zinc ion chemistry: The rechargeable zinc ion battery. Angew. Chem. , Int. Ed. 2012, 51, 933-935.

15

Kundu, D.; Adams, B. D.; Duffort, V.; Vajargah, S. H.; Nazar, L. F. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 2016, 1, 16119.

16

Zhang, N.; Cheng, F. Y.; Liu, Y. C.; Zhao, Q.; Lei, K. X.; Chen, C. C.; Liu, X. S.; Chen, J. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 2016, 138, 12894-12901.

17

Zhu, H. W.; Ge, J.; Peng, Y. C.; Zhao, H. Y.; Shi, L. A.; Yu, S. H. Dip-coating processed sponge-based electrodes for stretchable Zn-MnO2 batteries. Nano Res. 2018, 11, 1554-1562.

18

Li, Q.; Wei, T. Y.; Ma, K. X.; Yang, G. Z.; Wang, C. X. Boosting the cyclic stability of aqueous zinc-ion battery based on Al-doped V10O24·12H2O cathode materials. ACS Appl. Mater. Interfaces 2019, 11, 20888-20894.

19

Pan, H. L.; Shao, Y. Y.; Yan, P. F.; Cheng, Y. W.; Han, K. S.; Nie, Z. M.; Wang, C. M.; Yang, J. H.; Li, X. L.; Bhattacharya, P. et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 2016, 1, 16039.

20

Alfaruqi, M. H.; Islam, S.; Gim, J.; Song, J. J.; Kim, S.; Pham, D. T.; Jo, J.; Xiu, Z. L.; Mathew, V.; Kim, J. A high surface area tunnel-type α-MnO2 nanorod cathode by a simple solvent-free synthesis for rechargeable aqueous zinc-ion batteries. Chem. Phys. Lett. 2016, 650, 64-68.

21

Alfaruqi, M. H.; Gim, J.; Kim, S.; Song, J. J.; Jo, J.; Kim, S.; Mathew, V.; Kim, J. Enhanced reversible divalent zinc storage in a structurally stable α-MnO2 nanorod electrode. J. Power Sources 2015, 288, 320-327.

22

Lee, B.; Lee, H. R.; Kim, H.; Chung, K. Y.; Cho, B. W.; Oh, S. H. Elucidating the intercalation mechanism of zinc ions into α-MnO2 for rechargeable zinc batteries. Chem. Commun. 2015, 51, 9265-9268.

23

Aravindan, V.; Gnanaraj, J.; Lee, Y. S.; Madhavi, S. Insertion-type electrodes for nonaqueous Li-ion capacitors. Chem. Rev. 2014, 114, 11619-11635.

24

Li, B.; Dai, F.; Xiao, Q. F.; Yang, L.; Shen, J. M.; Zhang, C. M.; Cai, M. Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy Environ. Sci. 2016, 9, 102-106.

25

Jiao, Y. Z.; Zhang, H. T.; Zhang, H. L.; Liu, A.; Liu, Y. X.; Zhang, S. J. Highly bonded T-Nb2O5/rGO nanohybrids for 4 V quasi-solid state asymmetric supercapacitors with improved electrochemical performance. Nano Res. 2018, 11, 4673-4685.

26

Liao, X. B.; Zhao, Y. L.; Wang, J. H.; Yang, W.; Xu, L.; Tian, X. C.; Shuang, Y.; Owusu, K. A.; Yan, M. Y.; Mai, L. Q. MoS2/MnO2 heterostructured nanodevices for electrochemical energy storage. Nano Res. 2018, 11, 2083-2092.

27

Chen, S. H.; Wang, J.; Fan, L.; Ma, R. F.; Zhang, E. J.; Liu, Q.; Lu, B. G. An ultrafast rechargeable hybrid sodium-based dual-ion capacitor based on hard carbon cathodes. Adv. Energy Mater. 2018, 8, 1800140.

28

Li, B.; Zheng, J. S.; Zhang, H. Y.; Jin, L. M.; Yang, D. J.; Lv, H.; Shen, C.; Shellikeri, A.; Zheng, Y. R.; Gong, R. Q. et al. Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors. Adv. Mater. 2018, 30, 1705670.

29

Leng, K.; Zhang, F.; Zhang, L.; Zhang, T. F.; Wu, Y. P.; Lu, Y. H.; Huang, Y.; Chen, Y. S. Graphene-based Li-ion hybrid supercapacitors with ultrahigh performance. Nano Res. 2013, 6, 581-592.

30

Choudhary, N.; Li, C.; Moore, J.; Nagaiah, N.; Zhai, L.; Jung, Y.; Thomas, J. Asymmetric supercapacitor electrodes and devices. Adv. Mater. 2017, 29, 1605336.

31

Zheng, X. F.; Wang, H. E.; Wang, C.; Deng, Z.; Chen, L. H.; Li, Y.; Hasan, T.; Su, B. L. 3D interconnected macro-mesoporous electrode with self-assembled NiO nanodots for high-performance supercapacitor-like Li-ion battery. Nano Energy 2016, 22, 269-277.

32

Dong, S. Y.; Li, H. S.; Wang, J. J.; Zhang, X. G.; Ji, X. L. Improved flexible Li-ion hybrid capacitors: Techniques for superior stability. Nano Res. 2017, 10, 4448-4456.

33

Wang, H.; Wang, M.; Tang, Y. B. A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications. Energy Storage Mater. 2018, 13, 1-7.

34

Dong, L. B.; Ma, X. P.; Li, Y.; Zhao, L.; Liu, W. B.; Cheng, J. Y.; Xu, C. J.; Li, B. H.; Yang, Q. H.; Kang, F. Y. Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors. Energy Storage Mater. 2018, 13, 96-102.

35

Han, J. W.; Wang, K.; Liu, W. H.; Li, C.; Sun, X. Z.; Zhang, X.; An, Y. B.; Yi, S.; Ma, Y. W. Rational design of Nano-architecture composite hydrogel electrode towards high performance Zn-ion hybrid cell. Nanoscale 2018, 10, 13083-13091.

36

Yin, Y. L.; Liu, C. H.; Fan, S. S. A new type of secondary hybrid battery showing excellent performances. Nano Energy 2015, 12, 486-493.

37

Zhang, P. P.; Li, Y.; Wang, G.; Wang, F. X.; Yang, S.; Zhu, F.; Zhuang, X. D.; Schmidt, O. G.; Feng, X. L. Zn-ion hybrid micro-supercapacitors with ultrahigh areal energy density and long-term durability. Adv. Mater. 2019, 31, 1806005.

38

Wang, C. W.; O'Connell, M. J.; Chan, C. K. Facile one-pot synthesis of highly porous carbon foams for high-performance supercapacitors using template-free direct pyrolysis. Acs Appl. Mater. Interfaces 2015, 7, 8952-8960.

39

Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W. W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M. et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011, 332, 1537-1541.

40

Liu, P. G.; Wu, D. L.; Gao, Y.; Wang, T.; Tan, Y. Y.; Jia, D. Z. Reduced graphene oxide-coated mulberry-shaped α-Fe2O3 nanoparticles composite as high performance electrode material for supercapacitors. J. Alloys Compd. 2018, 738, 89-96.

41

Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235-246.

42

Arrigo, R.; Hävecker, M.; Wrabetz, S.; Blume, R.; Lerch, M.; McGregor, J.; Parrott, E. P. J.; Zeitler, J. A.; Gladden, L. F.; Knop-Gericke, A. et al. Tuning the acid/base properties of nanocarbons by functionalization via amination. J. Am. Chem. Soc. 2010, 132, 9616-9630.

43

Burke, A. Ultracapacitors: Why, how, and where is the technology. J. Power Sources 2000, 91, 37-50.

44

Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518-522.

Nano Research
Pages 2835-2841
Cite this article:
Liu P, Gao Y, Tan Y, et al. Rational design of nitrogen doped hierarchical porous carbon for optimized zinc-ion hybrid supercapacitors. Nano Research, 2019, 12(11): 2835-2841. https://doi.org/10.1007/s12274-019-2521-6
Topics:

715

Views

177

Crossref

N/A

Web of Science

171

Scopus

5

CSCD

Altmetrics

Received: 29 June 2019
Revised: 13 August 2019
Accepted: 18 September 2019
Published: 18 October 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return