Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Accumulation of lipid-laden macrophages (foam cells) is characteristic of atherosclerosis development in the arterial walls. Ferritin nanocages have been found to passively accumulate in the atherosclerotic plaque. Ferritin has been actively investigated as a carrier for contrast agents in atherosclerosis diagnosis. We demonstrate the potential of ferritin as a carrier for therapeutic molecules to mediate cholesterol reduction from foam cells. Cyclodextrin molecules are chemically conjugated to the ferritin nanocages surface or encapsulated within the nanocages using metal co-loading methods. The cyclodextrin-conjugated ferritin has nanomolar affinity to cholesterol molecules. Treatment of foam cells with the conjugates shows decreased levels of intracellular accumulated cholesterol. The preferential localization of ferritin to foam cells is due to transferrin receptor-mediated endocytosis process. These findings show that ferritin nanocages as carriers localize cyclodextrin molecules to foam cells which mediate intracellular cholesterol reduction, thus highlighting its potential use as a therapeutic agent.
Barquera, S.; Pedroza-Tobias, A.; Medina, C.; Hernández-Barrera, C.; Bibbins-Domingo, K.; Lozano, R.; Moran, A. E. Global overview of the epidemiology of atherosclerotic cardiovascular disease. Arch Med. Res. 2015, 46, 328–338.
Bittencourt, M. S.; Cerci, R. J. Statin effects on atherosclerotic plaques: Regression or healing? BMC Med. 2015, 13, 260.
Pankajakshan, D.; Agrawal, D. K. Clinical and translational challenges in gene therapy of cardiovascular diseases. In Gene Therapy-Tools and Potential Applications, USA, 2013, pp 651–683.
Angelovich, T. A.; Hearps, A. C.; Jaworowski, A. Inflammation-induced foam cell formation in chronic inflammatory disease. Immunol. Cell Biol. 2015, 93, 683–693.
Llodrá, J.; Angeli, V.; Liu, J. H.; Trogan, E.; Fisher, E. A.; Randolph, G. J. Emigration of monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not progressive, plaques. Proc. Natl. Acad. Sci. USA 2004, 101, 11779–11784.
Bäck, M.; Hansson, G. K. Anti-inflammatory therapies for atherosclerosis. Nat. Rev. Cardiol. 2015, 12, 199–211.
Blanco, H.; Shen, M. F.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951.
Sanchez-Gaytan, B. L.; Fay, F.; Lobatto, M. E.; Tang, J.; Ouimet, M.; Kim, Y.; van der Staay, S. E.; van Rijs, S. M.; Priem, B.; Zhang, L. et al. HDL-mimetic PLGA nanoparticle to target atherosclerosis plaque macrophages. Bioconjugate Chem. 2015, 26, 443–451.
Marrache, S.; Dhar, S. Biodegradable synthetic high-density lipoprotein nanoparticles for atherosclerosis. Proc. Natl. Acad. Sci. USA 2013, 110, 9445–9450.
Niyonzima, N.; Samstad, E. O.; Aune, M. H.; Ryan, L.; Bakke, S. S.; Rokstad, A. M.; Wright, S. D.; Damås, J. K.; Mollnes, T. E.; Latz, E. et al. Reconstituted high-density lipoprotein attenuates cholesterol crystal-induced inflammatory responses by reducing complement activation. J. Immunol. 2015, 195, 257–264.
Gu, X.; Zhang, W. L.; Liu, J. P.; Shaw, J. P.; Shen, Y. J.; Xu, Y. M.; Lu, H.; Wu, Z. M. Preparation and characterization of a lovastatin-loaded proteinfree nanostructured lipid carrier resembling high-density lipoprotein and evaluation of its targeting to foam cells. AAPS PharmSciTech 2011, 12, 1200–1208.
Spicer, C. D.; Jumeaux, C.; Gupta, B.; Stevens, M. M. Peptide and protein nanoparticle conjugates: Versatile platforms for biomedical applications. Chem. Soc. Rev. 2018, 47, 3574–3620.
Kitagawa, T.; Kosuge, H.; Uchida, M.; Dua, M. M.; Iida, Y.; Dalman, R. L.; Douglas, T.; McConnell, M. V. RGD-conjugated human ferritin nanoparticles for imaging vascular inflammation and angiogenesis in experimental carotid and aortic disease. Mol. Imaging Biol. 2012, 14, 315–324.
Lobatto, M. E.; Calcagno, C.; Millon, A.; Senders, M. L.; Fay, F.; Robson, P. M.; Ramachandran, S.; Binderup, T.; Paridaans, M. P. M.; Sensarn, S. et al. Atherosclerotic plaque targeting mechanism of long-circulating nanoparticles established by multimodal imaging. ACS Nano 2015, 9, 1837–1847.
Terashima, M.; Uchida, M.; Kosuge, H.; Tsao, P. S.; Young, M. J.; Conolly, S. M.; Douglas, T.; McConnell, M. V. Human ferritin cages for imaging vascular macrophages. Biomaterials 2011, 32, 1430–1437.
Nandwana, V.; Ryoo, S. R.; Kanthala, S.; Kumar, A.; Sharma, A.; Castro, F. C.; Li, Y.; Hoffman, B.; Lim, S.; Dravid, V. P. Engineered ferritin nanocages as natural contrast agents in magnetic resonance imaging. RSC Adv. 2017, 7, 34892–34900.
Sana, B.; Johnson, E.; Sheah, K; Poh, C. L.; Lim, S. Iron-based ferritin nanocore as a contrast agent. Biointerphases 2010, 5, FA48.
Sana, B.; Poh, C. L.; Lim, S. A manganese-ferritin nanocomposite as an ultrasensitive T2 contrast agent. Chem. Commun. 2012, 48, 862–864.
Sana, B.; Johnson, E.; Le Magueres, P.; Criswell, A.; Cascio, D.; Lim, S. The role of nonconserved residues of Archaeoglobus fulgidus ferritin on its unique structure and biophysical properties. J. Biol. Chem. 2013, 288, 32663–32672.
Bhaskar, S.; Lim, S. Engineering protein nanocages as carriers for biomedical applications. NPG Asia Materials 2017, 9, e371.
Liu, S. M.; Cogny, A.; Kockx, M.; Dean, R. T.; Gaus, K.; Jessup, W.; Kritharides, L. Cyclodextrins differentially mobilize free and esterified cholesterol from primary human foam cell macrophages. J. Lipid Res. 2003, 44, 1156–1166.
Atger, V. M.; de la Llera Moya, M.; Stoudt, G. W.; Rodrigueza, W. V.; Phillips, M. C.; Rothblat, G. H. Cyclodextrins as catalysts for the removal of cholesterol from macrophage foam cells. J. Clin. Invest. 1997, 99, 773–780.
Loftsson, T.; Jarho, P.; Másson, M.; Järvinen, T. Cyclodextrins in drug delivery. Expert Opin. Drug Deliv. 2005, 2, 335–351.
Davis, M. E.; Brewster, M. E. Cyclodextrin-based pharmaceutics: Past, present and future. Nat. Rev. Drug Discov. 2004, 3, 1023–1035.
Zimmer, S.; Grebe, A.; Bakke, S. S.; Bode, N.; Halvorsen, B.; Ulas, T.; Skjelland, M.; De Nardo, D.; Labzin, L. I.; Kerksiek, A. et al. Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming. Sci. Transl. Med. 2016, 8, 333ra50.
Di Cagno, M. P. The potential of cyclodextrins as novel active pharmaceutical ingredients: A short overview. Molecules 2017, 22, 1.
Sana, B.; Johnson, E.; Lim, S. The unique self-assembly/disassembly property of Archaeoglobus fulgidus ferritin and its implications on molecular release from the protein cage. Biochim. Biophys. Acta 2015, 1850, 2544–2551.
Besenicar, M. P.; Bavdek, A.; Kladnik, A.; Maček, P.; Anderluh, G. Kinetics of cholesterol extraction from lipid membranes by methyl-β-cyclodextrin—A surface plasmon resonance approach. Biochim. Biophys. Acta 2008, 1778, 175–184.
Tobias, R.; Kumaraswamy, S. Biomolecular binding kinetics assays on the octet platform. FortéBIO 2014, 14, 1–21.
Buecheler, J. W.; Howard, C. B.; de Bakker, C. J.; Goodall, S.; Jones, M. L.; Win, T.; Peng, T.; Tan, C. H.; Chopra, A.; Mahler, S. M.; et al. Development of a protein nanoparticle platform for targeting egfr expressing cancer cells. J. Chem. Technol. Biotechnol. 2015, 90, 1230–1236.
Li, L.; Fang, C. J.; Ryan, J. C.; Niemi, E. C.; Lebrón, J. A.; Björkman, P. J.; Arase, H.; Torti, F. M.; Torti, S. V.; Nakamura, M. C.; et al. Binding and uptake of H-ferritin are mediated by human transferrin receptor-1. Proc. Natl. Acad. Sci. USA 2010, 107, 3505–3510.
Kwon, C.; Kang, Y. J.; Jeon, S.; Jung, S.; Hong, S. Y.; Kang, S. Development of protein-cage-based delivery nanoplatforms by polyvalently displaying β-cyclodextrins on the surface of ferritins through copper(Ⅰ)-catalyzed azide/alkyne cycloaddition. Macromol. Biosci. 2012, 12, 1452–1458.
Rosenbaum, A. I.; Zhang, G. T.; Warren, J. D.; Maxfield, F. R. Endocytosis of beta-cyclodextrins is responsible for cholesterol reduction in niemann-pick type C mutant cells. Proc. Natl. Acad. Sci. USA 2010, 107, 5477–5482.
Li, W.; Xu, L. H.; Forssell, C.; Sullivan, J. L.; Yuan, X. M. Overexpression of transferrin receptor and ferritin related to clinical symptoms and destabilization of human carotid plaques. Exp. Biol. Med. (Maywood) 2008, 233, 818–826.
Fenyvesi, F.; Réti-Nagy, K.; Bacsó, Z.; Gutay-Tóth, Z.; Malanga, M.; Fenyvesi, é.; Szente, L.; Váradi, J.; Ujhelyi, Z.; Fehér, P. et al. Fluorescently labeled methyl-beta-cyclodextrin enters intestinal epithelial caco-2 cells by fluid-phase endocytosis. PLoS One 2014, 9, e84856.
Loftsson, T.; Brewster, M. E. Pharmaceutical applications of cyclodextrins: Basic science and product development. J. Pharm. Pharmacol. 2010, 62, 1607–1621.
Bachman, J. Site-directed mutagenesis. Methods Enzymol. 2013, 529, 241–248.
929
Views
33
Downloads
11
Crossref
N/A
Web of Science
11
Scopus
0
CSCD
Altmetrics
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.