AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

PdAg bimetallic electrocatalyst for highly selective reduction of CO2 with low COOH* formation energy and facile CO desorption

Rui Lin1,§Xuelu Ma2,§Weng-Chon Cheong1Chao Zhang1Wei Zhu3Jiajing Pei3Kaiyue Zhang4Bin Wang5Shiyou Liang6Yuxi Liu4Zhongbin Zhuang3Rong Yu6Hai Xiao1( )Jun Li1Dingsheng Wang1Qing Peng1Chen Chen1( )Yadong Li1
Department of ChemistryTsinghua UniversityBeijing100084China
School of Chemical & Environment EngineeringChina University of Mining & TechnologyBeijing100083China
College of Chemical EngineeringBeijing University of Chemical TechnologyBeijing100029China
College of Environmental and Energy EngineeringBeijing University of TechnologyBeijing100124China
Sinopec Beijing Research Institute of Chemical IndustryBeijing100013China
School of Materials Science and EngineeringNational Center for Electron Microscopy in BeijingTsinghua UniversityBeijing100084China

§ Rui Lin and Xuelu Ma contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

For electrocatalytic reduction of CO2 to CO, the stabilization of intermediate COOH* and the desorption of CO* are two key steps. Pd can easily stabilize COOH*, whereas the strong CO* binding to Pd surface results in severe poisoning, thus lowering catalytic activity and stability for CO2 reduction. On Ag surface, CO* desorbs readily, while COOH* requires a relatively high formation energy, leading to a high overpotential. In light of the above issues, we successfully designed the PdAg bimetallic catalyst to circumvent the drawbacks of sole Pd and Ag. The PdAg catalyst with Ag-terminated surface not only shows a much lower overpotential (-0.55 V with CO current density of 1 mA/cm2) than Ag (-0.76 V), but also delivers a CO/H2 ratio 18 times as high as that for Pd at the potential of -0.75 V vs. RHE. The issue of CO poisoning is significantly alleviated on Ag-terminated PdAg surface, with the stability well retained after 4 h electrolysis at -0.75 V vs. RHE. Density functional theory (DFT) calculations reveal that the Ag-terminated PdAg surface features a lowered formation energy for COOH* and weakened adsorption for CO*, which both contribute to the enhanced performance for CO2 reduction.

Electronic Supplementary Material

Download File(s)
12274_2019_2526_MOESM1_ESM.pdf (4 MB)

References

1

Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16–22.

2

Zhu, D. D.; Liu, J. L.; Qiao, S. Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv. Mater. 2016, 28, 3423–3452.

3

Gao, S.; Lin, Y.; Jiao, X. C.; Sun, Y. F.; Luo, Q. Q.; Zhang, W. H.; Li, D. Q.; Yang, J. L.; Xie, Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 2016, 529, 68–71.

4

Dinh, C. T.; Burdyny, T.; Kibria, M. G.; Seifitokaldani, A.; Gabardo, C. M.; García De Arquer, F. P.; Kiani, A.; Edwards, J. P.; De Luna, P.; Bushuyev, O. S. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 2018, 360, 783–787.

5

Chen, Y. H.; Kanan, M. W. Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. J. Am. Chem. Soc. 2012, 34, 1986–1989.

6

Reske, R.; Mistry, M.; Behafarid, F.; Roldan Cuenya, B.; Strasser, P. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J. Am. Chem. Soc. 2014, 136, 6978–6986.

7

Kim, D.; Resasco, J.; Yu, Y.; Asiri, A. M.; Yang, P. D. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat. Commun. 2014, 5, 4948.

8

Zhu, W. L.; Zhang, Y. J.; Zhang, H. Y.; Lv, H. F.; Li, Q.; Michalsky, R.; Peterson, A. A.; Sun, S. H. Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J. Am. Chem. Soc. 2014, 136, 16132–16135.

9

Luc, W.; Collins, C.; Wang, S. W.; Xin, H. L.; He, K.; Kang, Y. J.; Jiao, F. Ag–Sn bimetallic catalyst with a core–shell structure for CO2 reduction. J. Am. Chem. Soc. 2017, 139, 1885–1893.

10

Gu, J.; Hsu, C. S.; Bai, L. C.; Chen, H. M.; Hu, X. L. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 2019, 364, 1091–1094.

11

Zhang, B.; Zhang, T. J.; Feng, W. J.; Liu, Y. X.; Wang, H. H.; Su, H.; Lv, L. B.; Li, X. H.; Chen, J. S. Polarized few-layer g-C3N4 as metal-free electrocatalyst for highly efficient reduction of CO2. Nano Res. 2018, 11, 2450–1459.

12

Ma, S. C.; Sadakiyo, M.; Heima, M.; Luo, R.; Haasch, R. T.; Gold, J. I.; Yamauchi, M.; Kenis, P. J. A. Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu-Pd catalysts with different mixing patterns. J. Am. Chem. Soc. 2017, 139, 47–50.

13

Gao, D. F.; Zhou, H.; Cai, F.; Wang, J. G.; Wang, G. X.; Bao, X. H. Pd-containing nanostructures for electrochemical CO2 reduction reaction. ACS Catal. 2018, 8, 1510–1519.

14

Gao, D. F.; Zhou, H.; Cai, F.; Wang, D. N.; Hu, Y. F.; Jiang, B.; Cai, W. B.; Chen, X. Q.; Si, R.; Yang, F. et al. Switchable CO2 electroreduction via engineering active phases of Pd nanoparticles. Nano Res. 2017, 10, 2181–2191.

15

Bai, X. F.; Chen, W.; Zhao, C. C.; Li, S. G.; Song, Y. F.; Ge, R. P.; Wei, W.; Sun, Y. H. Exclusive formation of formic acid from CO2 electroreduction by a tunable Pd-Sn alloy. Angew. Chem., Int. Ed. 2017, 56, 12219–12223.

16

Gao, D. F.; Zhou, H.; Wang, J.; Miao, S.; Yang, F.; Wang, G. X.; Wang, J. G.; Bao, X. H. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J. Am. Chem. Soc. 2015, 137, 4288–4291.

17

Huang, H. W.; Jia, H. H.; Liu, Z.; Gao, P. F.; Zhao, J. T.; Luo, Z. L.; Yang, J. L.; Zeng, J. Understanding of strain effects in the electrochemical reduction of CO2: Using Pd nanostructures as an ideal platform. Angew. Chem., Int. Ed. 2017, 56, 3594–3598.

18

Zhu, W. J.; Zhang, L.; Yang, P. P.; Hu, C. L.; Luo, Z. B.; Chang, X. X.; Zhao, Z. J.; Gong, J. L. Low-coordinated edge sites on ultrathin palladium nanosheets boost carbon dioxide electroreduction performance. Angew. Chem., Int. Ed. 2018, 57, 11544–11548.

19

Jiang, B.; Zhang, X. G.; Jiang, K.; Wu, D. Y.; Cai, W. B. Boosting formate production in electrocatalytic CO2 reduction over wide potential window on Pd surfaces. J. Am. Chem. Soc. 2018, 140, 2880–2889.

20

Tao, H. C.; Sun, X. F.; Back, S.; Han, Z. S.; Zhu, Q. G.; Robertson, A. W.; Ma, T.; Fan, Q.; Han, B. X.; Jung, Y. et al. Doping palladium with tellurium for the highly selective electrocatalytic reduction of aqueous CO2 to CO. Chem. Sci. 2018, 9, 483–487.

21

Sun, K.; Wu, L. N.; Qin, W.; Zhou, J. G.; Hu, Y. F.; Jiang, Z. H.; Sheng, B. Z.; Wang, Z. J. Enhanced electrochemical reduction of CO2 to CO on Ag electrocatalysts with increased unoccupied density of states. J. Mater. Chem. A 2016, 4, 12616–12623.

22

Firet, N. J.; Smith, W. A. Probing the reaction mechanism of CO2 electroreduction over Ag films via operando infrared spectroscopy. ACS Catal. 2017, 7, 606–612.

23

Lu, Q.; Rosen, J.; Zhou, Y.; Hutchings, G. S.; Kimmel, Y. C.; Chen, J. G.; Jiao, F. A selective and efficient electrocatalyst for carbon dioxide reduction. Nat. Commun. 2014, 5, 3242.

24

Liu, S. B.; Tao, H. B.; Zeng, L.; Liu, Q.; Xu, Z. H.; Liu, Q. X.; Luo, J. L. Shape-dependent electrocatalytic reduction of CO2 to CO on triangular silver nanoplates. J. Am. Chem. Soc. 2017, 139, 2160–2163.

25

Kim, C.; Jeon, H. S.; Eom, T.; Jee, M. S.; Kim, H.; Friend, C. M.; Min, B. K.; Hwang, Y. J. Achieving selective and efficient electrocatalytic activity for CO2 reduction using immobilized silver nanoparticles. J. Am. Chem. Soc. 2015, 137, 13844–13850.

26

Feaster, J. T.; Shi, C.; Cave, E. R.; Hatsukade, T.; Abram, D. N.; Kuhl, K. P.; Hahn, C.; Nørskov, J. K.; Jaramillo, T. F. Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes. ACS Catal. 2017, 7, 4822–4827.

27

Sheng, W. C.; Kattel, S.; Yao, S. Y.; Yan, B. H.; Liang, Z. X.; Hawxhurst, C. J.; Wu, Q. Y.; Chen, J. G. Electrochemical reduction of CO2 to synthesis gas with controlled CO/H2 ratios. Energy Environ. Sci. 2017, 10, 1180–1185.

28

Hansen, H. A.; Shi, C.; Lausche, A. C.; Peterson, A. A.; Nørskov, J. K. Bifunctional alloys for the electroreduction of CO2 and CO. Phys. Chem. Chem. Phys. 2016, 18, 9194–9201.

29

He, J. F.; Johnson, N. J. J.; Huang, A. X.; Berlinguette, C. P. Electrocatalytic alloys for CO2 reduction. ChemSusChem 2018, 11, 48–57.

30

Rasul, S.; Anjum, D. H.; Jedidi, A.; Minenkov, Y.; Cavallo, L.; Takanabe, K. A highly selective copper–indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO. Angew. Chem., Int. Ed. 2015, 54, 2146–2150.

31

Xing, X. L.; Zhao, Y. F.; Li, H.; Wang, C. T.; Li, Q. X.; Cai, W. B. High performance Ag rich Pd-Ag bimetallic electrocatalyst for ethylene glycol oxidation in alkaline media. J. Electrochem. Soc. 2018, 165, J3259–J3265.

32

Zhao, Z. L.; Lu, G. Computational screening of near-surface alloys for CO2 electroreduction. ACS Catal. 2018, 8, 3885–3894.

33

Nørskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 2009, 1, 37–46.

34

Lu, Z. W.; Wei, S. H.; Zunger, A. Electronic structure of ordered and disordered Cu3Au and Cu3Pd. Phys. Rev. B 1992, 45, 10314–10330.

35

Ruda, M.; Farkas, D.; Abriata, J. Interatomic potentials for carbon interstitials in metals and intermetallics. Scripta Mater. 2002, 46, 349–355.

36

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

37

Hansen, H. A.; Varley, J. B.; Peterson, A. A.; Nørskov, J. K. Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO. J. Phys. Chem. Lett. 2013, 4, 388–392.

Nano Research
Pages 2866-2871
Cite this article:
Lin R, Ma X, Cheong W-C, et al. PdAg bimetallic electrocatalyst for highly selective reduction of CO2 with low COOH* formation energy and facile CO desorption. Nano Research, 2019, 12(11): 2866-2871. https://doi.org/10.1007/s12274-019-2526-1
Topics:

795

Views

65

Crossref

N/A

Web of Science

64

Scopus

14

CSCD

Altmetrics

Received: 28 June 2019
Revised: 18 September 2019
Accepted: 27 September 2019
Published: 17 October 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return