Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
L10-FePt nanoparticles (NPs) with high chemical ordering represent effective electrocatalysts to reduce the cost and enhance their catalytic performance in fuel cells. A molecular strategy of preparing highly ordered FePt NPs was used by direct pyrolysis of a Fe, Pt-containing bimetallic complex. The resultant L10-FePt NPs had very high crystallinity as reflected by the obvious diffraction patterns, clear lattice fringes and characteristic X-ray diffraction peaks, etc. Besides, the strong ferromagnetism with room temperature coercivity of 27 kOe further confirmed the face-centered tetragonal (fct) phase in good agreement with the ordered nanostructures. The FePt NPs can be used as electrocatalysts to catalyze oxygen reduction reaction (ORR) in an O2-saturated 0.1 M HClO4 solution and hydrogen evolution reaction (HER) in the 0.5 M H2SO4 electrolyte with much better performance than commercial Pt/C, and showed quite high stability after 10, 000 cycles. The strategy utilizing organometallic precursors to prepare metal alloy NPs was demonstrated to be a reliable approach for improving the catalytic efficiency in fuel cells.
Shao, M. H.; Chang, Q. W.; Dodelet, J. P.; Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev., 2016, 116, 3594–3657.
Zhou, M.; Wang, H. L.; Guo, S. J. Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials. Chem. Soc. Rev., 2016, 45, 1273–1307.
Li, D. G.; Lv, H. F.; Kang, Y. J.; Markovic, N. M.; Stamenkovic, V. R. Progress in the development of oxygen reduction reaction catalysts for low-temperature fuel cells. Annu. Rev. Chem. Biomol. Eng., 2016, 7, 509–532.
Martínez-Huerta, M. V.; Lázaro, M. J. Electrocatalysts for low temperature fuel cells. Catal. Today, 2017, 285, 3–12.
Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature, 2012, 486, 43–51.
Chaudhari, N. K.; Joo, J.; Kwon, H. B.; Kim, B.; Kim, H. Y.; Joo, S. H.; Lee, K. Nanodendrites of platinum-group metals for electrocatalytic applications. Nano Res., 2018, 11, 6111–6140.
Xia, W.; Mahmood, A.; Liang, Z. B.; Zou, R. Q.; Guo, S. J. Earth-abundant nanomaterials for oxygen reduction. Angew. Chem., Int. Ed., 2016, 55, 2650–2676.
Xia, Z. H.; An, L.; Chen, P. K.; Xia, D. G. Non-Pt nanostructured catalysts for oxygen reduction reaction: Synthesis, catalytic activity and its key factors. Adv. Energy Mater., 2016, 6, 1600458.
Hu, F.; Yang, H. C.; Wang, C. H.; Zhang, Y. J.; Lu, H.; Wang, Q. B. Co-N-doped mesoporous carbon hollow spheres as highly efficient electrocatalysts for oxygen reduction reaction. Small, 2017, 13, 1602507.
Yan, D. F.; Guo, L.; Xie, C.; Wang, Y. Y.; Li, Y. X.; Li, H.; Wang, S. Y. N, P-dual doped carbon with trace Co and rich edge sites as highly efficient electrocatalyst for oxygen reduction reaction. Sci. China Mater., 2018, 61, 679–685.
Wang, X. Q.; Wang, W. Y.; Qiao, M.; Wu, G.; Chen, W. X.; Yuan, T. W.; Xu, Q.; Chen, M.; Zhang, Y.; Wang, X. et al. Atomically dispersed Au1 catalyst towards efficient electrochemical synthesis of ammonia. Sci. Bull., 2018, 63, 1246–1253.
Shao, Q.; Li, F. M.; Chen, Y.; Huang, X. Q. The advanced designs of high-performance platinum-based electrocatalysts: Recent progresses and challenges. Adv. Mater. Interfaces, 2018, 5, 1800486.
Yao, Y. C.; Hu, S. L.; Chen, W. X.; Huang, Z. Q.; Wei, W. C.; Yao, T.; Liu, R. R.; Zang, K. T.; Wang, X. Q.; Wu, G. et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal., 2019, 2, 304–313.
Therrien, A. J.; Hensley, A. J. R.; Marcinkowski, M. D.; Zhang, R. Q.; Lucci, F. R.; Coughlin, B.; Schilling, A. C.; McEwen, J. S.; Sykes, E. C. H. An atomic-scale view of single-site Pt catalysis for low-temperature CO oxidation. Nat. Catal., 2018, 1, 192–198.
Zhu, Y. Q.; Cao, T.; Cao, C. B.; Luo, J.; Chen, W. X.; Zheng, L. R.; Dong, J. C.; Zhang, J.; Han, Y. H.; Li, Z. et al. One-pot pyrolysis to N-doped graphene with high-density Pt single atomic sites as heterogeneous catalyst for alkene hydrosilylation. ACS Catal., 2018, 8, 10004–10011.
Zhang, L.; Doyle-Davis, K.; Sun, X. L. Pt-based electrocatalysts with high atom utilization efficiency: From nanostructures to single atoms. Energy Environ. Sci., 2019, 12, 492–517.
Xia, B. Y.; Ng, W. T.; Wu, H. B.; Wang, X.; Lou, X. W. Self-supported interconnected Pt nanoassemblies as highly stable electrocatalysts for low-temperature fuel cells. Angew. Chem., Int. Ed., 2012, 51, 7213–7216.
Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science, 2016, 354, 1414–1419.
Singh, A. K.; Xu, Q. Synergistic catalysis over bimetallic alloy nanoparticles. ChemCatChem, 2013, 5, 652–676.
Sulaiman, J. E.; Zhu, S. Q.; Xiang, Z. L.; Chang, Q. W.; Shao, M. H. Pt-Ni octahedra as electrocatalysts for the ethanol electro-oxidation reaction. ACS Catal., 2017, 7, 5134–5141.
Martins, M.; Šljukić, B.; Sequeira, C. A. C.; Soylu, G. S. P.; Yurtcan, A. B.; Bozkurt, G.; Sener, T.; Santos, D. M. F. PtNi supported on binary metal oxides: Potential bifunctional electrocatalysts for low-temperature fuel cells? Appl. Surf. Sci. 2018, 428, 31–40.
Du, N. N.; Wang, C. M.; Long, R.; Xiong, Y. J. N-doped carbon-stabilized PtCo nanoparticles derived from Pt@ZIF-67: Highly active and durable catalysts for oxygen reduction reaction. Nano Res., 2017, 10, 3228–3237.
Yao, Y. C.; He, D. S.; Lin, Y.; Feng, X. Q.; Wang, X.; Yin, P. Q.; Hong, X.; Zhou, G.; Wu, Y. E.; Li, Y. D. Modulating fcc and hcp ruthenium on the surface of palladium-copper alloy through tunable lattice mismatch. Angew. Chem., Int. Ed., 2016, 55, 5501–5505.
Sandstrom, R.; Hu, G. Z.; Wågberg, T. Compositional evaluation of coreduced Fe-Pt metal acetylacetonates as PEM fuel cell cathode catalyst. ACS Appl. Energy Mater., 2018, 1, 7106–7115.
Li, Q.; Wu, L. H.; Wu, G.; Su, D.; Lv, H. F.; Zhang, S.; Zhu, W. L.; Casimir, A.; Zhu, H. Y.; Mendoza-Garcia, A. et al. New approach to fully ordered fct-FePt nanoparticles for much enhanced electrocatalysis in acid. Nano Lett., 2015, 15, 2468–2473.
Hong, Y.; Kim, H. J.; Yang, D.; Lee, G.; Nam, K. M.; Jung, M. H.; Kim, Y. M.; Choi, S. I.; Seo, W. S. Facile synthesis of fully ordered L10-FePt nanoparticles with controlled Pt-shell thicknesses for electrocatalysis. Nano Res., 2017, 10, 2866–2880.
Li, J. R.; Xi, Z.; Pan, Y. T.; Spendelow, J. S.; Duchesne, P. N.; Su, D.; Li, Q.; Yu, C.; Yin, Z. Y.; Shen, B. et al. Fe Stabilization by intermetallic L10-FePt and Pt catalysis enhancement in L10-FePt/Pt nanoparticles for efficient oxygen reduction reaction in fuel cells. J. Am. Chem. Soc., 2018, 140, 2926–2932.
Lin, F.; Sun, Y. J.; Lai, J. P.; Wang, K.; Tang, Y. H.; Chao, Y. G.; Yang, Y.; Feng, J. R.; Lv, F.; Zhou, P. et al. 3D PtFe clusters with cube-in-cube structure enhance oxygen reduction catalysis and electrochemical sensing. Small Methods, 2018, 2, 1800073.
He, Y.; Wu, Y. L.; Zhu, X. X.; Wang, J. N. Remarkable improvement of the catalytic performance of PtFe nanoparticles by structural ordering and doping. ACS Appl. Mater. Interfaces, 2019, 11, 11527–11536.
Chung, D. Y.; Jun, S. W.; Yoon, G.; Kwon, S. G.; Shin, D. Y.; Seo, P.; Yoo, J. M.; Shin, H.; Chung, Y. H.; Kim, H. et al. Highly durable and active PtFe nanocatalyst for electrochemical oxygen reduction reaction. J. Am. Chem. Soc., 2015, 137, 15478–15485.
Sun, S. H. Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv. Mater., 2006, 18, 393–403.
Ghosh, S.; Basu, R. N. Multifunctional nanostructured electrocatalysts for energy conversion and storage: Current status and perspectives. Nanoscale, 2018, 10, 11241–11280.
Yan, Y.; He, T.; Zhao, B.; Qi, K.; Liu, H. F.; Xia, B. Y. Metal/covalent-organic frameworks-based electrocatalysts for water splitting. J. Mater. Chem. A, 2018, 6, 15905–15926.
Li, K.; Li, Y.; Wang, Y. M.; Ge, J. J.; Liu, C. P.; Xing W. Enhanced electrocatalytic performance for the hydrogen evolution reaction through surface enrichment of platinum nanoclusters alloying with ruthenium in situ embedded in carbon. Energy Environ. Sci., 2018, 11, 1232–1239.
Wu, L. H.; Mendoza-Garcia, A.; Li, Q.; Sun, S. H. Organic phase syntheses of magnetic nanoparticles and their applications. Chem. Rev., 2016, 116, 10473–10512.
Zhu, K.; Ju, Y. M.; Xu, J. J.; Yang, Z. Y.; Gao, S.; Hou, Y. L. Magnetic nanomaterials: Chemical design, synthesis, and potential applications. Acc. Chem. Res., 2018, 51, 404–413.
Zhou, M.; Wang, H. L.; Vara, M.; Hood, Z. D.; Luo, M.; Yang, T. H.; Bao, S. X.; Chi, M. F.; Xiao, P.; Zhang, Y. H. et al. Quantitative analysis of the reduction kinetics responsible for the one-pot synthesis of Pd-Pt bimetallic nanocrystals with different structures. J. Am. Chem. Soc., 2016, 138, 12263–12270.
Kang, E.; Jung, H.; Park, J. G.; Kwon, S.; Shim, J.; Sai, H.; Wiesner, U.; Kim, J. K.; Lee, J. Block copolymer directed one-pot simple synthesis of L10-phase FePt nanoparticles inside ordered mesoporous aluminosilicate/carbon composites. ACS Nano, 2011, 5, 1018–1025.
Dong, Q. C.; Meng, Z. G.; Ho, C. L.; Guo, H. E.; Yang, W. Y.; Manners, I.; Xu, L. L.; Wong, W. Y. A molecular approach to magnetic metallic nanostructures from metallopolymer precursors. Chem. Soc. Rev., 2018, 47, 4934–4953.
Lee, E.; Huang, Z. G.; Ryu, J. H.; Lee, M. Rigid-flexible block molecules based on a laterally extended aromatic segment: Hierarchical assembly into single fibers, flat ribbons, and twisted ribbons. Chem. —Eur. J., 2008, 14, 6957–6966.
Zopes, D.; Hegemann, C.; Schläfer, J.; Tyrra, W.; Mathur, S. Single-source precursors for alloyed gold-silver nanocrystals-a molecular metallurgy approach. Inorg. Chem., 2015, 54, 3781–3787.
Zhu, Z. Q.; Wang, S. W.; Du, J.; Jin, Q.; Zhang, T. R.; Cheng, F. Y.; Chen, J. Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries. Nano Lett., 2014, 14, 153–157.
Meng, Z. G.; Ho, C. L.; Wong, H. F.; Yu, Z. Q.; Zhu, N. Y.; Li, G. J.; Leung, C. W.; Wong, W. Y. Lithographic patterning of ferromagnetic FePt nanoparticles from a single-source bimetallic precursor containing hemiphasmidic structure for magnetic data recording media. Sci. China Mater., 2019, 62, 566–576.
Ferrari, A. C.; Robertson, J. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B, 2001, 64, 075414.
Rutledge, R. D.; Morris III, W. H.; Wellons, M. S.; Gai, Z.; Shen, J.; Bentley, J.; Wittig, J. E.; Lukehart, C. M. Formation of FePt nanoparticles having high coercivity. J. Am. Chem. Soc., 2006, 128, 14210–14211.
Medwal, R.; Sehdev, N.; Annapoorni, G. S. Electronic states of self stabilized L10 FePt alloy nanoparticles. Appl. Phys. A, 2012, 109, 403–408.
Staunton, J. B.; Ostanin, S.; Razee, S. S. A.; Gyorffy, B. L.; Szunyogh, L.; Ginatempo, B.; Bruno, E. Temperature dependent magnetic anisotropy in metallic magnets from an ab initio electronic structure theory: L10-ordered FePt. Phys. Rev. Lett., 2004, 93, 257204.