Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Stretchable strain sensors play an increasingly important role in artificial intelligent devices. However, high-performance strain sensors have been slowly developed owing to the harsh requirement of self-powered function, long cycle life and high resolution. Here, we report a self-powered stretchable graphene-ecoflex composite strain sensor based on photo-thermoelectric (PTE) effect induced electricity. The device exhibits a high strain sensitivity of -0.056 ln(nA)/% with strains ranged from 0% to 20% under 980 nm light illumination, where the strain sensitivity can be found to increase with increasing light intensity. The strain sensor maintains outstanding dynamic stability under periodic strains ranged from 0 to 100% in 100 cycles. The sensing resolution can be as high as 0.5% with both the response and recovery time of less than 0.6 s. It can precisely monitor human joint motions and stretchable strains by implanting the device in pork.
Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C. K.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z. A. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 2011, 6, 788–792.
Rogers, J. A. Wearable electronics: Nanomesh on-skin electronics. Nat. Nanotechnol. 2017, 12, 839–840.
Chen, X. Y.; Wu, Y. L.; Shao, J. J.; Jiang, T.; Yu, A. R; Xu, L.; Wang, Z. L. On-skin triboelectric nanogenerator and self-powered sensor with ultrathin thickness and high stretchability. Small 2017, 13, 1702929.
Morin, S. A.; Shepherd, R. R.; Kwok, S. W.; Stokes, A. A.; Nemiroski, A.; Whitesides, G. M. Camouflage and display for soft machines. Science 2012, 337, 828–832.
Shepherd, R. F.; Ilievski, F.; Choi, W.; Morin, S. A; Stokes, A. A; Mazzeo, A. D.; Chen, X.; Wang, M.; Whitesides, G. M. Multigait soft robot. Proc. Natl. Acad. Sci. USA 2011, 108, 20400–20403.
Pu, X. J.; Guo, H. Y.; Chen, J.; Wang, X.; Xi, Y.; Hu, C. G.; Wang, Z. L. Rye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator. Sci. adv. 2017, 3, el700694.
Jung, S.; Kim, J. H.; Kim, J.; Choi, S.; Lee, J.; Park, I.; Hyeon, T.; Kim, D. H. Reverse-micelle-induced porous pressure-sensitive rubber for wearable human-machine interfaces. Adv. Mater. 2014, 26, 4825–4830.
Cheng, Y.; Wang, R. R.; Sun, J.; Gao, L. Astretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion. Adv. Mater. 2015, 27, 7365–7371.
Takei, K.; Honda, W.; Harada, S.; Arie, T.; Akita, S. Toward flexible and wearable human-interactive health-monitoring devices. Adv. Healthc. Mater. 2015, 4, 487–500.
Kim, S. R.; Kim, J. H.; Park, J. W. Wearable and transparent capacitive strain sensor with high sensitivity based on patterned Ag nanowire networks. ACS Appl. Mater. Interfaces 2017, 9, 26407–26416.
Kim, J.; Kim, M.; Lee, M. S.; Kim, K.; Ji, S.; Kim, Y. T.; Park, J.; Na, K.; Bae, K. H.; Kim, H. K. et al. Wearable smart sensor systems integrated on softcontact lenses for wireless ocular diagnostics. Nat. Commun. 2017, 8, 14997.
Wang, Y.; Wang, L.; Yang, T. T.; Li, X.; Zang, X. B.; Zhu, M.; Wang, K. L.; Wu, D. H.; Zhu, H. W. Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv. Fund. Mater. 2014, 24, 4666-4610.
Park, M.; Im, J.; Shin, M.; Min, Y.; Park, J.; Cho, H.; Park, S.; Shim, M. B.; Jeon, S.; Chung, D. Y. et al. Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat. Nanotechnol. 2012, 7, 803–809.
Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D. N.; Hata, K. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 2011, 6, 296–301.
Wang, S. H; Mu, X. J.; Yang, Y.; Sun, C. L.; Gu, A. Y.; Wang, Z. L. Flow-driven triboelectric generator for directly powering a wireless sensor node. Adv. Mater. 2015, 27, 240–248.
Zhang, K. W.; Yang, Y. Linear-grating hybridized electromagnetic-triboelectric nanogenerator for sustainably powering portable electronics. Nana Res. 2016, 9, 974–984.
Yang, Y.; Zhu, G; Zhang, H. L.; Chen, J.; Zhong, X. D.; Lin, Z. H; Su, Y. J.; Bai, P.; Wen, X. N.; Wang, Z. L. Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system. ACS Nana 2013, 7, 9461–9468.
Yang, Y.; Zhu, G; Zhang, H. L.; Chen, J.; Zhong, X. D.; Lin, Z. H; Su, Y. J.; Bai, P.; Wen, X. N.; Wang, Z. L. Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system. ACS Nana 2013, 7, 9461–9468.
Zhang, D.; Zhang, K. W.; Wang, Y. M.; Wang, Y. H.; Yang, Y. Thermoelectric effect induced electricity in stretchable graphene-polymer nanocomposites for ultrasensitive self-powered strain sensor system. Nana Energy 2019, 56, 25–32.
Yang, Y.; Wang, S. H; Zhang, Y.; Wang, Z. L. Pyroelectric nanogenerators for driving wireless sensors. Nana Lett. 2012, 12, 6408–6413.
Zhang, D.; Wang, Y. H.; Yang, Y. Design, performance, and application of thermoelectric nanogenerators. Small 2019, 75, 1805241.
Zhang, X. F.; Gao, W. Q.; Su, X. W.; Wang, R L.; Liu, B. S.; Wang, J. J.; Liu, H.; Sang, Y. H. Conversion of solar power to chemical energy based on carbon nanoparticle modified photo-thermoelectric generator and electrochemical water splitting system. Nana Energy 2018, 48, 481–488.
He, M. H; Lin, Y. J.; Chiu, C. M.; Yang, W. F.; Zhang, B. B.; Yun, D. Q.; Xie, Y N.; Lin, Z. H. A flexible photo-thermoelectric nanogenerator based on MoS2/PU photothermal layer for infrared light harvesting. Nana Energy 2018, 49, 588–595.
Huang, X.; Zeng, Z. Y.; Fan, Z. X.; Liu, J. Q.; Zhang, H. Graphene-basedelectrodes. Adv. Mater. 2012, 24, 5979–6004.
Huang, X.; Zeng, Z. Y.; Fan, Z. X.; Liu, J. Q.; Zhang, H. Graphene-based electrodes. Adv. Mater. 2012, 24, 5979–6004.
Ye, M. H; Zhang, Z. P.; Zhao, Y.; Qu, L. T. Graphene platforms for smart energy generation and storage. Joule 2018, 2, 245–268.
Kim, J. Y; Grossman, J. C. High-efficiency thermoelectrics with functionalized graphene. NanoLett. 2015, 15, 2830–2835.
Cai, X. H.; Sushkov, A. B.; Suess, R. J.; Jadidi, M. M.; Jenkins, G S.; Nyakiti, L. O.; Myers-Ward, R. L.; Li, S. S.; Yan, J.; Gaskill, D. K. et al. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. Nat. Nanotechnol. 2014, 9, 814–819.
Boutry, C. M.; Kaizawa, Y.; Schroeder, B. C.; Chortos, A.; Legrand, A.; Wang, Z.; Chang, J.; Fox, P.; Bao, Z. N. A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nat. Electron. 2018, 1, 314–321.
Liu, Z.; Ma, Y.; Ouyang, H.; Shi, B. J.; Li, N.; Jiang, D. J.; Xie, R; Qu, D.; Zou, Y.; Huang, Y. et al. Transcatheter self-powered ultrasensitive endocardial pressure sensor. Adv. Fund. Mater. 2019, 29, 1807560.
Cheng, X. L.; Xue, X.; Ma, Y.; Han, M. D.; Zhang, W.; Xu, Z. Y.; Zhang, H.; Zhang. H. X. Implantable and self-powered blood pressure monitoring based on a piezoelectric thinfilm: Simulated, in vitro and in vivo studies. Nano Energy 2016, 22, 453–460.