AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Unexpected intercalation-dominated potassium storage in WS2 as a potassium-ion battery anode

Yuhan Wu1Yang Xu2( )Yueliang Li3Pengbo Lyu4Jin Wen5Chenglin Zhang1Min Zhou1Yaoguo Fang1Huaping Zhao1Ute Kaiser3Yong Lei1( )
Fachgebiet Angewandte NanophysikInstitut für Physik & ZMN MacroNano (ZIK)Technische Universit?t IlmenauIlmenau98693Germany
University College LondonLondon WC1H 0AJUK
Central Facility for Electron MicroscopyElectron Microscopy Group of Materials ScienceUlm UniversityUlm89081Germany
Department of Physical and Macromolecular ChemistryFaculty of ScienceCharles University12843Prague 2, Czech Republic
Institute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech Republic16610Prague 6, Czech Republic
Show Author Information

Graphical Abstract

Abstract

Unexpected intercalation-dominated process is observed during K+ insertion in WS2 in a voltage range of 0.01–3.0 V. This is different from the previously reported two-dimensional (2D) transition metal dichalcogenides that undergo a conversion reaction in a low voltage range when used as anodes in potassium-ion batteries. Charge/discharge processes in the K and Na cells are studied in parallel to demonstrate the different ion storage mechanisms. The Na+ storage proceeds through intercalation and conversion reactions while the K+ storage is governed by an intercalation reaction. Owing to the reversible K+ intercalation in the van der Waals gaps, the WS2 anode exhibits a low decay rate of 0.07% per cycle, delivering a capacity of 103 mAh·g-1 after 100 cycles at 100 mA·g-1. It maintains 57% capacity at 800 mA·g-1 and shows stable cyclability up to 400 cycles at 500 mA·g-1. Kinetics study proves the facilitation of K+ transport is derived from the intercalation-dominated mechanism. Furthermore, the mechanism is verified by the density functional theory (DFT) calculations, showing that the progressive expansion of the interlayer space can account for the observed results.

Electronic Supplementary Material

Download File(s)
12274_2019_2543_MOESM1_ESM.pdf (5 MB)

References

1

Yabuuchi, N. ; Kubota, K. ; Dahbi, M. ; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.

2

Xu, Y. ; Zhou, M. ; Lei, Y. Nanoarchitectured array electrodes for rechargeable lithium- and sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1502514.

3

Kim, H. ; Kim, J. C. ; Bianchini, M. ; Seo, D. H. ; Rodriguez-Garcia, J. ; Ceder, G. Recent progress and perspective in electrode materials for K-ion batteries. Adv. Energy Mater. 2018, 8, 1702384.

4

Xu, Y. ; Zhou, M. ; Lei, Y. Organic materials for rechargeable sodiumion batteries. Mater. Today 2018, 21, 60–78.

5

Pramudita, J. C. ; Sehrawat, D. ; Goonetilleke, D. ; Sharma, N. An initial review of the status of electrode materials for potassium-ion batteries. Adv. Energy Mater. 2017, 7, 1602911.

6

Zhao, C. L. ; Wang, Q. D. ; Lu, Y. X. ; Li, B. H. ; Chen, L. Q. ; Hu, Y. S. High-temperature treatment induced carbon anode with ultrahigh Na storage capacity at lowvoltage plateau. Sci. Bull. 2018, 63, 1125–1129.

7

Guan, D. D. ; Yu, Q. ; Xu, C. ; Tang, C. J. ; Zhou, L. ; Zhao, D. Y. ; Mai, L. Q. Aerosol synthesis of trivalent titanium doped titania/carbon composite microspheres with superior sodium storage performance. Nano Res. 2017, 10, 4351–4359.

8

Chen, Z. ; Xu, L. H. ; Chen, Q. ; Hu, P. ; Liu, Z. H. ; Yu, Q. ; Zhu, T. ; Liu, H. C. ; Hu, G. W. ; Zhu, Z. Z. et al. Spray-pyrolysis-assisted synthesis of yolk@shell anatase with rich oxygen vacancies for efficient sodium storage. J. Mater. Chem. A 2019, 7, 6740–6746.

9

Eftekhari, A. On the theoretical capacity/energy of lithium batteries and their counterparts. ACS Sustainable Chem. Eng. 2019, 7, 3684–3687.

10

Zhang, G. ; Liu, H. J. ; Qu, J. H. ; Li, J. H. Two-dimensional layered MoS2: Rational design, properties and electrochemical applications. Energy Environ. Sci. 2016, 9, 1190–1209.

11

Eftekhari, A. Tungsten dichalcogenides (WS2, WSe2, and WTe2): Materials chemistry and applications. J. Mater. Chem. A 2017, 5, 18299–18325.

12

Voiry, D. ; Yamaguchi, H., Li, J. W. ; Silva, F. ; Alves, D. C. B. ; Fujita, T. ; Chen, M. W. ; Asefa, T, Shenoy, V. B. ; Eda, G. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850–855.

13

Wang, J. B. ; Chen, L. ; Zeng, L. X. ; Wei, Q. H. ; Wei, M. D. In situ synthesis of WSe2/CMK-5 nanocomposite for rechargeable lithium-ion batteries with a long-term cycling stability. ACS Sustainable Chem. Eng. 2018, 6, 4688–4694.

14

Yu, X. Y. ; Prévot, M. S. ; Guijarro, N. ; Sivula, K. Self-assembled 2D WSe2 thin films for photoelectrochemical hydrogen production. Nat. Commun. 2015, 5, 7596.

15

Taylor, S. R. Abundance of chemical elements in the continental crust: A new table. Geochim. Cosmochim. Acta 1964, 28, 1273–1285.

16

Xie, K. Y. ; Yuan, K. ; Li, X. ; Lu, W. ; Shen, C. ; Liang, C. L. ; Vajtai, R. ; Ajayan, P. ; Wei, B. Q. Superior potassium ion storage via vertical MoS2 "Nano-rose" with expanded interlayers on graphene. Small 2017, 13, 1701471.

17

Lakshmi, V. ; Chen, Y. ; Mikhaylov, A. A. ; Medvedev, A. G. ; Sultana, I. ; Rahman, M. M. ; Lev, O. ; Prikhodchenko, P. V. ; Glushenkov, A. M. Nanocrystalline SnS2 coated onto reduced graphene oxide: Demonstrating the feasibility of a non-graphitic anode with sulfide chemistry for potassium-ion batteries. Chem. Commun. 2017, 53, 8272–8275.

18

Zhou, J. H. ; Wang, L. ; Yang, M. Y. ; Wu, J. H. ; Chen, F. J. ; Huang, W. J. ; Han, N. ; Ye, H. L. ; Zhao, F. P. ; Li, Y. Y. et al. Hierarchical VS2 nanosheet assemblies: A universal host material for the reversible storage of alkali metal ions. Adv. Mater. 2017, 29, 1702061.

19

Mao, M. L. ; Cui, C. Y. ; Wu, M. G. ; Zhang, M. ; Gao, T. ; Fan, X. L. ; Chen, J. ; Wang, T. H. ; Ma, J. M. ; Wang, C. S. Flexible ReS2 nanosheets/N-doped carbon nanofibers-based paper as a universal anode for alkali (Li, Na, K) ion battery. Nano Energy 2018, 45, 346–352.

20

Ge, J. M. ; Fan, L. ; Wang, J. ; Zhang, Q. F. ; Liu, Z. M. ; Zhang, E. J. ; Liu, Q. ; Yu, X. Z. ; Lu, B. G. MoSe2/N-doped carbon as anodes for potassium-ion batteries. Adv. Energy Mater. 2018, 8, 1801477.

21

Yang, C. ; Feng, J. R. ; Lv, F. ; Zhou, J. H. ; Lin, C. F. ; Wang, K. ; Zhang, Y. L. ; Yang, Y. ; Wang, W. ; Li, J. B. et al. Metallic graphene-like VSe2 ultrathin nanosheets: Superior potassium-ion storage and their working mechanism. Adv. Mater. 2018, 30, 1800036.

22

Ren, X. D. ; Zhao, Q. ; McCulloch, W. D. ; Wu, Y. Y. MoS2 as a long-life host material for potassium ion intercalation. Nano Res. 2017, 10, 1313–1321.

23

Xu, Y. ; Bahmani, F. ; Zhou, M. ; Li, Y. L. ; Zhang, C. L. ; Liang, F. ; Kazemi, S. H. ; Kaiser, U. ; Meng, G. W. ; Lei, Y. Enhancing potassium-ion battery performance by defect and interlayer engineering. Nanoscale Horiz. 2019, 4, 202–207.

24

Wang, X. ; Huang, J. F. ; Li, J. Y. ; Cao, L. Y. ; Hao, W. ; Xu, Z. W. ; Kang, Q. Controlling the layered structure of WS2 nanosheets to promote Na+ insertion with enhanced Na-ion storage performance. Electrochim. Acta 2016, 222, 1724–1732.

25

Von Lim, Y. ; Wang, Y. ; Kong, D. Z. ; Guo, L. ; Wong, J. I. ; Ang, L. K. ; Yang, H. Y. Cubic-shaped WS2 nanopetals on a prussian blue derived nitrogendoped carbon nanoporous framework for high performance sodium-ion batteries. J. Mater. Chem. A 2017, 5, 10406–10415.

26

Xie, F. Y. ; Gong, L. ; Liu, X. ; Tao, Y. T. ; Zhang, W. H. ; Chen, S. H. ; Meng, H. ; Chen, J. XPS studies on surface reduction of tungsten oxide nanowire film by Ar+ bombardment. J. Electron Spectros. Relat. Phenom. 2012, 185, 112–118.

27

Zhang, R. D. ; Bao, J. Z. ; Pan, Y. L. ; Sun, C. F. Highly reversible potassium-ion intercalation in tungsten disulfide. Chem. Sci. 2019, 10, 2604–2612.

28

Jeanguillaume, C. ; Trebbia, P. ; Colliex, C. About the use of electron energy-loss spectroscopy for chemical mapping of thin foils with high spatial resolution. Ultramicroscopy 1978, 3, 237–242.

29

Kishore, B. ; Venkatesh, G. ; Munichandraiah, N. K2Ti4O9: A promising anode material for potassium ion batteries. J. Electrochem. Soc. 2016, 163, A2551–A2554.

30

Dong, S. Y. ; Li, Z. F. ; Xing, Z. Y. ; Wu, X. Y. ; Ji, X. L. ; Zhang, X. G. Novel potassium-ion hybrid capacitor based on an anode of K2Ti6O13 microscaffolds. ACS Appl. Mater. Interfaces 2018, 10, 15542–15547.

31

Han, J. ; Xu, M. W. ; Niu, Y. B. ; Li, G. N. ; Wang, M. Q. ; Zhang, Y. ; Jia, M. ; Li, C. M. Exploration of K2Ti8O17 as an anode material for potassium-ion batteries. Chem. Commun. 2016, 52, 11274–11276.

32

Deng, L. Q. ; Yang, Z. ; Tan, L. L. ; Zeng, L. ; Zhu, Y. J. ; Guo, L. Investigation of the prussian blue analog Co3[Co(CN)6]2 as an anode material for nonaqueous potassium-ion batteries. Adv. Mater. 2018, 30, 1802510.

33

Zhang, C. L. ; Xu, Y. ; Zhou, M. ; Liang, L. Y. ; Dong, H. S. ; Wu, M. H. ; Yang, Y. ; Lei, Y. Potassium prussian blue nanoparticles: A low-cost cathode material for potassium-ion batteries. Adv. Funct. Mater. 2017, 27, 1604307.

34

Zhou, L. Y. ; Yan, S. C. ; Pan, L. J. ; Wang, X. R. ; Wang, Y. Q. ; Shi, Y. A scalable sulfuration of WS2 to improve cyclability and capability of lithium-ion batteries. Nano Res. 2016, 9, 857–865.

35

Augustyn, V. ; Come, J. ; Lowe, M. A. ; Kim, J. W. ; Taberna, P. L. ; Tolbert, 5. H. ; Abruña, H. D. ; Simon, P. ; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522.

36

Lindström, H. ; Södergren, S. ; Solbrand, A. ; Rensmo, H. ; Hjelm, J. ; Hagfeldt, A. ; Lindquist, S. E. Li+ ion insertion in TiO2 (anatase). 2. voltammetry on nanoporous films. J. Phys. Chem. B 1997, 101, 7717–7722.

37

Zhao, J. ; Zou, X. X. ; Zhu, Y. J. ; Xu, Y. H. ; Wang, C. S. Electrochemical intercalation of potassium into graphite. Adv. Funct. Mater. 2016, 26, 8103–8110.

38

Xu, Y. ; Zhang, C. L. ; Zhou, M. ; Fu, Q. ; Zhao, C. X. ; Wu, M. H. ; Lei, Y. Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 2018, 9, 1720.

39

Deng, L. Q. ; Niu, X. G. ; Ma, G. S. ; Yang, Z. ; Zeng, L. ; Zhu, Y. J. ; Guo, L. Layered potassium vanadate K0.5V2O5 as a cathode material for nonaqueous potassium ion batteries. Adv. Funct. Mater. 2018, 28, 1800670.

40

Yeh, Y. Y. ; Chiang, W. H. ; Liu, W. R. Synthesis of few-layer WS2 by jet cavitation as anode material for lithium ion batteries. J. Alloys Compd. 2019, 775, 1251–1258.

41

Xu, Y. ; Zhou, M. ; Zhang, C. L. ; Wang, C. L. ; Liang, L. Y. ; Fang, Y. G. ; Wu, M. H. ; Cheng, L. ; Lei, Y. Oxygen vacancies: Effective strategy to boost sodium storage of amorphous electrode materials. Nano Energy 2017, 38, 304–312.

42

Yu, Y. X. Prediction of mobility, enhanced storage capacity, and volume change during sodiation on interlayer-expanded functionalized Ti3C2 mxene anode materials for sodium-ion batteries. J. Phys. Chem. C 2016, 120, 5288–5296.

43

Er, D. Q. ; Li, J. W. ; Naguib, M. ; Gogotsi, Y. ; Shenoy, V. B. Ti3C2 mxene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 11173–11179.

Nano Research
Pages 2997-3002
Cite this article:
Wu Y, Xu Y, Li Y, et al. Unexpected intercalation-dominated potassium storage in WS2 as a potassium-ion battery anode. Nano Research, 2019, 12(12): 2997-3002. https://doi.org/10.1007/s12274-019-2543-0
Topics:

820

Views

20

Downloads

88

Crossref

N/A

Web of Science

84

Scopus

6

CSCD

Altmetrics

Received: 14 August 2019
Revised: 01 October 2019
Accepted: 12 October 2019
Published: 05 November 2019
© The Author(s) 2019

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return