AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A flutter-effect-based triboelectric nanogenerator for breeze energy collection from arbitrary directions and self-powered wind speed sensor

Jie Hu1Xianjie Pu1Hongmei Yang1Qixuan Zeng1Qian Tang1Dazhi Zhang1Chenguo Hu1Yi Xi1( )
Department of Applied PhysicsState Key Laboratory of Power Transmission Equipment & System Security and New TechnologyChongqing UniversityChongqing400044China
Show Author Information

Graphical Abstract

Abstract

Triboelectric nanogenerators (TENGs) have been developed rapidly into an efficient wind energy collection equipment. Reducing the friction wear and energy loss in breeze energy collection is a research direction worthy of attention. Herein, a flutter-effect-based triboelectric nanogenerator (FE-TENG) is designed to collect the breeze energy at low wind speed from arbitrary directions. Distinguishing from previous wind-driven TENGs, the wind-driven part of this device is separated from the TENG units, which not only avoids the wear of friction layers caused by direct wind contact but also reduces the energy loss, therefore, relatively stable electric outputs are obtained with VOC ~ 281 V, ISC ~ 13.4 μA, QSC ~ 143 nC, and output power ~ 4 mW at the wind speed of 4.5 m/s, respectively. In addition, a real-time wind speed monitoring system based on LabVIEW software with high sensitivity and fast response to wind is achieved relying on the excellent linear relationship between wind speed and electrical output signal. Furthermore, it has been successfully applied as power sources for portable electronics, about 170 commercial light-emitting devices (LEDs) are lighted and a digital watch is successfully driven at the wind speed of 2.9 m/s. This work not only provides a new structure and idea for the future collection of clean and sustainable breeze energy from arbitrary directions but also has great potential in the field of self-powered systems.

Electronic Supplementary Material

Download File(s)
12274_2019_2545_MOESM4_ESM.pdf (1,010.3 KB)

References

1

Ackermann, T. ; Söder, L. Wind energy technology and current status: A review. Renew. Sustain. Energy Rev. 2000, 4, 315-374.

2

Abbey, C. ; Joos, G. Supercapacitor energy storage for wind energy applications. IEEE Trans. Ind. Appl. 2007, 43, 769-776.

3

Kaldellis, J. K. ; Zafirakis, D. The wind energy (r)evolution: A short review of a long history. Renew. Energy 2011, 36, 1887-1901.

4

Chen, B. ; Yang, Y. ; Wang, Z. L. Scavenging wind energy by triboelectric nanogenerators. Adv. Energy Mater. 2018, 8, 1702649.

5

Chu, S. ; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294-303.

6

Tuller, S. E. ; Brett, A. C. The characteristics of wind velocity that favor the fitting of a Weibull distribution in wind speed analysis. J. Climate Appl. Meteor. 1984, 23, 124-134.

7

Wagner, S. ; Bareiß, R. ; Guidati, G. Wind Turbine Noise; Springer: Berlin, Heidelberg, 1996.

8

Kammen, D. M. ; Sunter, D. A. City-integrated renewable energy for urban sustainability. Science 2016, 352, 922-928.

9

Harding, G. ; Harding, P. ; Wilkins, A. Wind turbines, flicker, and photosensitive epilepsy: Characterizing the flashing that may precipitate seizures and optimizing guidelines to prevent them. Epilepsia 2008, 49, 1095-1098.

10

Pan, L. ; Wang, J. Y. ; Wang, P. H. ; Gao, R. J. ; Wang, Y. C. ; Zhang, X. W. ; Zou, J. J. ; Wang, Z. L. Liquid-FEP-based U-tube triboelectric nanogenerator for harvesting water-wave energy. Nano Res. 2018, 11, 4062-4073.

11

He, X. M. ; Mu, X. J. ; Wen, Q. ; Wen, Z. Y. ; Yang, J. ; Hu, C. G. ; Shi, H. F. Flexible and transparent triboelectric nanogenerator based on high performance well-ordered porous PDMS dielectric film. Nano Res. 2016, 9, 3714-3724.

12

Liu, J. M. ; Cui, N. Y. ; Gu, L. ; Chen, X. B. ; Bai, S. ; Zheng, Y. B. ; Hu, C. X. ; Qin, Y. A three-dimensional integrated nanogenerator for effectively harvesting sound energy from the environment. Nanoscale 2016, 8, 4938- 4944.

13

Liu, G. L. ; Chen, J. ; Guo, H. Y. ; Lai, M. H. ; Pu, X. J. ; Wang, X. ; Hu, C. G. Triboelectric nanogenerator based on magnetically induced retractable spring steel tapes for efficient energy harvesting of large amplitude motion. Nano Res. 2018, 11, 633-641.

14

Yang, H. M. ; Wang, M. F. ; Deng, M. M. ; Guo, H. Y. ; Zhang, W. ; Yang, H. K. ; Xi, Y. ; Li, X. G. ; Hu, C. G. ; Wang, Z. L. A full-packaged rolling triboelectric-electromagnetic hybrid nanogenerator for energy harvesting and building up self-powered wireless systems. Nano Energy 2019, 56, 300-306.

15

Cao, R. ; Zhou, T. ; Wang, B. ; Yin, Y. Y. ; Yuan, Z. Q. ; Li, C. J. ; Wang, Z. L. Rotating-sleeve triboelectric-electromagnetic hybrid nanogenerator for high efficiency of harvesting mechanical energy. ACS Nano 2017, 11, 8370-8378.

16

Wang, J. Y. ; Ding, W. B. ; Pan, L. ; Wu, C. S. ; Yu, H. ; Yang, L. J. ; Liao, R. J. ; Wang, Z. L. Self-powered wind sensor system for detecting wind speed and direction based on a triboelectric nanogenerator. ACS Nano 2018, 12, 3954-3963.

17

Ahmed, A. ; Hassan, I. ; Hedaya, M. ; Abo El-Yazid, T. ; Zu, J. ; Wang, Z. L. Farms of triboelectric nanogenerators for harvesting wind energy: A potential approach towards green energy. Nano Energy 2017, 36, 21-29.

18

Chen, S. W. ; Gao, C. Z. ; Tang, W. ; Zhu, H. R. ; Han, Y. ; Jiang, Q. W. ; Li, T. ; Cao, X. ; Wang, Z. L. Self-powered cleaning of air pollution by wind driven triboelectric nanogenerator. Nano Energy 2015, 14, 217-225.

19

Xie, Y. N. ; Wang, S. H. ; Lin, L. ; Jing, Q. S. ; Lin, Z. H. ; Niu, S. M. ; Wu, Z. Y. ; Wang, Z. L. Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy. ACS Nano 2013, 7, 7119-7125.

20

Argentina, M. ; Mahadevan, L. Fluid-flow-induced flutter of a flag. Proc. Natl. Acad. Sci. USA 2005, 102, 1829-1834.

21

Carruthers, A. ; Filippone, A. Aerodynamic drag of streamers and flags. J. Aircr. 2005, 42, 976-982.

22

Watanabe, Y. ; Isogai, K. ; Suzuki, S. ; Sugihara, M. A theoretical study of paper flutter. J. Fluids Struct. 2002, 16, 543-560.

23

Theodorsen, T. General Theory of Aerodynamic Instability and the Mechanism of Flutter; NACA: Langley Field, VA, USA, 1935.

24

Theodorsen, T. ; Garrick, I. E. Mechanism of Flutter a Theoretical and Experimental Investigation of the Flutter Problem; NACA: Langley Field, VA, USA, 1940.

25

Quan, Z. C. ; Han, C. B. ; Jiang, T. ; Wang, Z. L. Robust thin films-based triboelectric nanogenerator arrays for harvesting bidirectional wind energy. Adv. Energy Mater. 2016, 6, 1501799.

26

Zhang, L. ; Zhang, B. B. ; Chen, J. ; Jin, L. ; Deng, W. L. ; Tang, J. F. ; Zhang, H. T. ; Pan, H. ; Zhu, M. H. ; Yang, W. Q. et al. Lawn structured triboelectric nanogenerators for scavenging sweeping wind energy on rooftops. Adv. Mater. 2016, 28, 1650-1656.

27

Bae, J. ; Lee, J. ; Kim, S. ; Ha, J. ; Lee, B. S. ; Park, Y. J. ; Choong, C. ; Kim, J. B. ; Wang, Z. L. ; Kim, H. Y. et al. Flutter-driven triboelectrification for harvesting wind energy. Nat. Commun. 2014, 5, 4929.

28

Wang, S. H. ; Mu, X. J. ; Wang, X. ; Gu, A. Y. ; Wang, Z. L. ; Yang, Y. Elasto-aerodynamics-driven triboelectric nanogenerator for scavenging air-flow energy. ACS Nano 2015, 9, 9554-9563.

29

Guo, H. Y. ; He, X. M. ; Zhong, J. W. ; Zhong, Q. Z. ; Leng, Q. ; Hu, C. G. ; Chen, J. ; Tian, L. ; Xi, Y. ; Zhou, J. A nanogenerator for harvesting airflow energy and light energy. J. Mater. Chem. A 2014, 2, 2079-2087.

30

Zhao, Z. F. ; Pu, X. ; Du, C. H. ; Li, L. X. ; Jiang, C. Y. ; Hu, W. G. ; Wang, Z. L. Freestanding flag-type triboelectric nanogenerator for harvesting high-altitude wind energy from arbitrary directions. ACS Nano 2016, 10, 1780-1787.

31

Yang, Y. ; Zhu, G. ; Zhang, H. L. ; Chen, J. ; Zhong, X. D. ; Lin, Z. H. ; Su, Y. J. ; Bai, P. ; Wen, X. N. ; Wang, Z. L. Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system. ACS Nano 2013, 7, 9461-9468.

32

Diaz, A. F. ; Felix-Navarro, R. M. A semi-quantitative tribo-electric series for polymeric materials: The influence of chemical structure and properties. J. Electrostat. 2004, 62, 277-290.

33

Davies, D. K. Charge generation on dielectric surfaces. J. Phys. D: Appl. Phys. 1969, 2, 1533-1537.

34

Sun, J. ; Li, W. ; Liu, G. X. ; Li, W. J. ; Chen, M. F. Triboelectric nano-generator based on biocompatible polymer materials. J. Phys. Chem. C 2015, 119, 9061-9068.

35

Wang, F. X. ; Hou, Q. M. ; Bo, J. L. ; Pan, J. Study on control system of low speed PM generator direct driven by wind turbine. In Proceedings of 2005 International Conference on Electrical Machines and Systems, Nanjing, China, 2005; pp 1009-1012.

36

Zhang, K. W. ; Yang, Y. Linear-grating hybridized electromagnetic-triboelectric nanogenerator for sustainably powering portable electronics. Nano Res. 2016, 9, 974-984.

37

He, C. ; Zhu, W. J. ; Gu, G. Q. ; Jiang, T. ; Xu, L. ; Chen, B. D. ; Han, C. B. ; Li, D. C. ; Wang, Z. L. Integrative square-grid triboelectric nanogenerator as a vibrational energy harvester and impulsive force sensor. Nano Res. 2018, 11, 1157-1164.

Nano Research
Pages 3018-3023
Cite this article:
Hu J, Pu X, Yang H, et al. A flutter-effect-based triboelectric nanogenerator for breeze energy collection from arbitrary directions and self-powered wind speed sensor. Nano Research, 2019, 12(12): 3018-3023. https://doi.org/10.1007/s12274-019-2545-y
Topics:

743

Views

78

Crossref

N/A

Web of Science

74

Scopus

13

CSCD

Altmetrics

Received: 30 July 2019
Revised: 14 October 2019
Accepted: 16 October 2019
Published: 06 November 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return