AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Development of a homogenous assay based on fluorescent imprinted nanoparticles for analysis of nitroaromatic compounds

Asma Elbelazi1,2Francesco Canfarotta3( )Joanna Czulak3Michael J. Whitcombe1Sergey Piletsky1Elena Piletska1
Chemistry Department, University of LeicesteLE1 7RH, LeicesterUK
Chemistry Department, University of TripoliTripoliLibya
MIP Diagnostics Ltd., Colworth Science ParkSharnbrook, Bedford, MK44 1LQUK
Show Author Information

Graphical Abstract

Abstract

Herein we describe the development of a homogeneous assay for the detection of 4-nitroaniline (4-NA) and 2, 4-dinitroaniline (2, 4-diNA). This assay relies on fluorescent molecularly imprinted nanoparticles (nanoMIPs) which, upon interaction with the target analytes, generate a reduction in fluorescence emission intensity (quenching). This is due to a responsive fluorescent monomer (N-2-propenyl-(5-dimethylamino)-1-naphthalene sulphonamide) employed in the manufacture of the nanoMIPs which, by virtue of the imprinting process, is capable of selective interaction with the target analyte, thus giving rise to a quenching effect. Selectivity experiments showed excellent recognition properties toward the target molecule. Under optimal conditions, the fluorescence intensity of these nanoMIPs decreased as the concentration of the imprinted analyte increased from 10 nM to 2.71 μM. A linear relation between the negative logarithm of 4-NA or 2, 4-diNA concentrations and the fluorescence intensity for both nanosystems was found (R2 = 0.991 and R2 = 0.9895), with excellent sensitivity (limit of detection (LOD) = 7 and 6 nM, respectively). Furthermore, both nanosystems have been successfully applied for detection of 4-NA or 2, 4-diNA in tap water, with recoveries between 90% to 100.6% and 92% to 100.3%, respectively. Thanks to the versatility of the imprinting process, this nanosystem holds the potential for further development of several optical sensors for many other compounds.

Electronic Supplementary Material

Download File(s)
12274_2019_2550_MOESM1_ESM.pdf (1.6 MB)

References

1

Wang, M. H. ; De Vivo, B. ; Lu, W. J. ; Muniz-Miranda, M. Sensitive surface-enhanced Raman scattering (SERS) detection of nitroaromatic pollutants in water. Appl. Spectrosc. 2014, 68, 784–788.

2

Yazdi, A. S. ; Mofazzeli, F. ; Es'haghi, Z. Determination of 3-nitroaniline in water samples by directly suspended droplet three-phase liquid-phase microextraction using 18-crown-6 ether and high-performance liquid chromatography. J. Chromatogr. A2009, 1216, 5086–5091.

3

Fan, Y. C. ; Hu, Z. L. ; Chen, M. L. ; Tu, C. S. ; Zhu, Y. Ionic liquid based dispersive liquid-liquid microextraction of aromatic amines in water samples. Chin. Chem. Lett. 2008, 19, 985–987.

4

Wu, T. ; Wang, H. T. ; Shen, B. ; Du, Y. P. ; Wang, X. ; Wang, Z. P. ; Zhang, C. J. ; Miu, W. B. Determination of primary aromatic amines using immobilized nanoparticles based surface-enhanced Raman spectroscopy. Chin. Chem. Lett. 2016, 27, 745–748.

5

Guo, X. F. ; Lv, J. ; Zhang, W. D. ; Wang, Q. J. ; He, P. G. ; Fang, Y. Z. Separation and determination of nitroaniline isomers by capillary zone electrophoresis with amperometric detection. Talanta2006, 69, 121–125.

6

Dimou, A. D. ; Sakkas, V. A. ; Albanis, T. A. Photodegradation of trifluralin in natural waters and soils: Degradation kinetics and influence of organic matter. Int. J. Environ. Anal. Chem. 2004, 84, 173–182.

7

Busquets, R. ; Jonsson, J. Å. ; Frandsen, H. ; Puignou, L. ; Galceran, M. T. ; Skog, K. Hollow fibre-supported liquid membrane extraction and LC-MS/MS detection for the analysis of heterocyclic amines in urine samples. Mol. Nutr. Food Res. 2009, 53, 1496–1504.

8

Mishra, S. ; Singh, V. ; Jain, A. ; Verma, K. K. Simultaneous determination of ammonia, aliphatic amines, aromatic amines and phenols at µg L-1 levels in environmental waters by solid-phase extraction of their benzoyl derivatives and gas chromatography-mass spectrometry. Analyst2001, 126, 1663–1668.

9

Tong, C. L. ; Guo, Y. ; Liu, W. P. Simultaneous determination of five nitroaniline and dinitroaniline isomers in wastewaters by solid-phase extraction and high-performance liquid chromatography with ultraviolet detection. Chemosphere2010, 81, 430–435.

10

Yao, L. F. ; He, H. B. ; Feng, Y. Q. ; Da, S. L. HPLC separation of positional isomers on a dodecylamine-N, N-dimethylenephosphonic acid modified zirconia stationary phase. Talanta2004, 64, 244–251.

11

Wu, P. Y. ; Liu, Y. H. ; Li, Y. ; Jiang, M. ; Li, X. L. ; Shi, Y. H. ; Wang, J. A cadmium(Ⅱ)-based metal-organic framework for selective trace detection of nitroaniline isomers and photocatalytic degradation of methylene blue in neutral aqueous solution. J. Mater. Chem. A2016, 4, 16349–16355.

12

Tominaga, Y. ; Kubo, T. ; Yasuda, K. ; Kato, K. ; Hosoya, K. Development of molecularly imprinted porous polymers for selective adsorption of gaseous compounds. Microporous Mesoporous Mater. 2012, 156, 161–165.

13

Tse Sum Bui, B. ; Haupt, K. Molecularly imprinted polymers: Synthetic receptors in bioanalysis. Anal. Bioanal. Chem. 2010, 398, 2481–2492.

14

Jiang, S. Y. ; Peng, Y. ; Ning, B. A. ; Bai, J. L. ; Liu, Y. Y. ; Zhang, N. ; Gao, Z. X. Surface plasmon resonance sensor based on molecularly imprinted polymer film for detection of histamine. Sens. Actuators B: Chem. 2015, 221, 15–21.

15

Donato, L. ; Algieri, C. ; Rizzi, A. ; Giorno, L. Kinetic study of tyrosinase immobilized on polymeric membrane. J. Membr. Sci. 2014, 454, 346–350.

16

Xu, X. ; Duhoranimana, E. ; Zhang, X. M. Preparation and characterization of magnetic molecularly imprinted polymers for the extraction of hexamethylenetetramine in milk samples. Talanta2017, 163, 31–38.

17

Moczko, E. ; Poma, A. ; Guerreiro, A. ; Perez De Vargas Sansalvador, I. ; Caygill, S. ; Canfarotta, F. ; Whitcombe, M. J. ; Piletsky, S. Surface-modified multifunctional MIP nanoparticles. Nanoscale2013, 5, 3733–3741.

18

Wackerlig, J. ; Lieberzeit, P. A. Molecularly imprinted polymer nanoparticles in chemical sensing—Synthesis, characterisation and application. Sens. Actuators B: Chem. 2015, 207, 144–157.

19

Canfarotta, F. ; Waters, A. ; Sadler, R. ; McGill, P. ; Guerreiro, A. ; Papkovsky, D. ; Haupt, K. ; Piletsky, S. Biocompatibility and internalization of molecularly imprinted nanoparticles. Nano Res. 2016, 9, 3463–3477.

20

Canfarotta, F. ; Czulak, J. ; Betlem, K. ; Sachdeva, A. ; Eersels, K. ; Van Grinsven, B. ; Cleij, T. J. ; Peeters, M. A novel thermal detection method based on molecularly imprinted nanoparticles as recognition elements. Nanoscale2018, 10, 2081–2089.

21

Basozabal, I. ; Guerreiro, A. ; Gomez-Caballero, A. ; Aranzazu Goicolea, M. ; Barrio, R. J. Direct potentiometric quantification of histamine using solid-phase imprinted nanoparticles as recognition elements. Biosens. Bioelectron. 2014, 58, 138–144.

22

Canfarotta, F. ; Czulak, J. ; Guerreiro, A. ; Cruz, A. G. ; Piletsky, S. ; Bergdahl, G. E. ; Hedström, M. ; Mattiasson, B. A novel capacitive sensor based on molecularly imprinted nanoparticles as recognition elements. Biosens. Bioelectron. 2018, 120, 108–114.

23

Chianella, I. ; Guerreiro, A. ; Moczko, E. ; Caygill, J. S. ; Piletska, E. V. ; De Vargas Sansalvador, I. M. P. ; Whitcombe, M. J. ; Piletsky, S. A. Direct replacement of antibodies with molecularly imprinted polymer nanoparticles in ELISA—Development of a novel assay for vancomycin. Anal. Chem. 2013, 85, 8462–8468.

24

Smolinska-Kempisty, K. ; Guerreiro, A. ; Canfarotta, F. ; Cáceres, C. ; Whitcombe, M. J. ; Piletsky, S. A comparison of the performance of molecularly imprinted polymer nanoparticles for small molecule targets and antibodies in the ELISA format. Sci. Rep. 2016, 6, 37638.

25

Poma, A. ; Guerreiro, A. ; Whitcombe, M. J. ; Piletska, E. V. ; Turner, A. P. F. ; Piletsky, S. Solid-phase synthesis of molecularly imprinted polymer nanoparticles with a reusable template—"Plastic antibodies". Adv. Funct. Mater. 2013, 23, 2821–2827.

26

Rouhani, S. ; Nahavandifard, F. Molecular imprinting-based fluorescent optosensor using a polymerizable 1, 8-naphthalimide dye as a florescence functional monomer. Sens. Actuators B: Chem. 2014, 197, 185–192.

27

Lu, X. ; Yang, Y. W. ; Zeng, Y. B. ; Li, L. ; Wu, X. H. Rapid and reliable determination of p-nitroaniline in wastewater by molecularly imprinted fluorescent polymeric ionic liquid microspheres. Biosens. Bioelectron. 2018, 99, 47–55.

28

Chen, Z. H. ; álvarez-Pérez, M. ; Navarro-Villoslada, F. ; Moreno-Bondi, M. C. ; Orellana, G. Fluorescent sensing of "quat" herbicides with a multifunctional pyrene-labeled monomer and molecular imprinting. Sens. Actuators B: Chem. 2014, 191, 137–142.

29

Inoue, Y. ; Kuwahara, A. ; Ohmori, K. ; Sunayama, H. ; Ooya, T. ; Takeuchi, T. Fluorescent molecularly imprinted polymer thin films for specific protein detection prepared with dansyl ethylenediamine-conjugated O-acryloyl L-hydroxyproline. Biosens. Bioelectron. 2013, 48, 113–119.

30

Cheng, Y. ; Jiang, P. ; Lin, S. ; Li, Y. N. ; Dong, X. C. An imprinted fluorescent chemosensor prepared using dansyl-modified β-cyclodextrin as the functional monomer for sensing of cholesterol with tailor-made selectivity. Sens. Actuators B: Chem. 2014, 193, 838–843.

31

Wang, W. ; Gao, S. H. ; Wang, B. H. Building fluorescent sensors by template polymerization: The preparation of a fluorescent sensor for D-fructose. Org. Lett. 1999, 1, 1209–1212.

32
Gao, S. H. ; Wang, W. ; Wang, B. H. Molecularly imprinted polymers as recognition elements in optical sensors. In Molecularly Imprinted Materials: Science and Technology. Yan, M. D. ; Ramstrom, O., Eds. ; Marcel Dekker: New York, 2005; pp 701–726.https://doi.org/10.1201/9781420030303.ch27
33

Turner, N. W. ; Holdsworth, C. I. ; McCluskey, A. ; Bowyer, M. C. N-2-propenyl-(5-dimethylamino)-1-naphthalene sulfonamide, a novel fluorescent monomer for the molecularly imprinted polymer-based detection of 2, 4-dinitrotoluene in the gas phase. Aust. J. Chem. 2012, 65, 1405–1412.

34

Caddick, S. ; Wilden, J. D. ; Judd, D. B. Direct synthesis of sulfonamides and activated sulfonate esters from sulfonic acids. J. Am. Chem. Soc. 2004, 126, 1024–1025.

35

Canfarotta, F. ; Poma, A. ; Guerreiro, A. ; Piletsky, S. Solid-phase synthesis of molecularly imprinted nanoparticles. Nat. Protoc. 2016, 11, 443–455.

36

Bolchi, C. ; Valoti, E. ; Straniero, V. ; Ruggeri, P. ; Pallavicini, M. From 2-aminomethyl-1, 4-benzodioxane enantiomers to unichiral 2-cyano- and 2-carbonyl-substituted benzodioxanes via dichloroamine. J. Org. Chem. 2014, 79, 6732–6737.

37

Sun, X. C. ; Wang, Y. ; Lei, Y. Fluorescence based explosive detection: From mechanisms to sensory materials. Chem. Soc. Rev. 2015, 44, 8019–8061.

38

Bagheri, M. ; Masoomi, M. Y. ; Morsali, A. Highly sensitive and selective ratiometric fluorescent metal-organic framework sensor to nitroaniline in presence of nitroaromatic compounds and VOCs. Sens. Actuators B: Chem. 2017, 243, 353–360.

39

Chen, N. ; Ding, P. ; Shi, Y. ; Jin, T. Y. ; Su, Y. Y. ; Wang, H. Y. ; He, Y. Portable and reliable surface-enhanced Raman scattering silicon chip for signal-on detection of trace trinitrotoluene explosive in real systems. Anal. Chem. 2017, 89, 5072–5078.

Nano Research
Pages 3044-3050
Cite this article:
Elbelazi A, Canfarotta F, Czulak J, et al. Development of a homogenous assay based on fluorescent imprinted nanoparticles for analysis of nitroaromatic compounds. Nano Research, 2019, 12(12): 3044-3050. https://doi.org/10.1007/s12274-019-2550-1
Topics:

625

Views

18

Crossref

N/A

Web of Science

18

Scopus

0

CSCD

Altmetrics

Received: 25 September 2019
Revised: 21 October 2019
Accepted: 21 October 2019
Published: 27 November 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return