AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Confining MOF-derived SnSe nanoplatelets in nitrogen-doped graphene cages via direct CVD for durable sodium ion storage

Chen Lu1,§Zhenzhu Li1,§Zhou Xia1Haina Ci1,2Jingsheng Cai1Yingze Song1Lianghao Yu1Wanjian Yin1Shixue Dou3Jingyu Sun1,2( )Zhongfan Liu1,2,4( )
College of EnergySoochow Institute for Energy and Materials Innovations (SIEMIS)Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu ProvinceSoochow UniversitySuzhou215006China
Beijing Graphene Institute (BGI)Beijing100095China
Institute for Superconducting and Electronic MaterialsUniversity of WollongongWollongongNSW2522Australia
Center for Nanochemistry (CNC)Beijing Science and Engineering Center for NanocarbonsBeijing National Laboratory for Molecular SciencesCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China

§Chen Lu and Zhenzhu Li contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Tin-based compounds are deemed as suitable anode candidates affording promising sodium-ion storages for rechargeable batteries and hybrid capacitors. However, synergistically tailoring the electrical conductivity and structural stability of tin-based anodes to attain durable sodium-ion storages remains challenging to date for its practical applications. Herein, metal-organic framework (MOF) derived SnSe/C wrapped within nitrogen-doped graphene (NG@SnSe/C) is designed targeting durable sodium-ion storage. NG@SnSe/C possesses favorable electrical conductivity and structure stability due to the "inner" carbon framework from the MOF thermal treatment and "outer" graphitic cage from the direct chemical vapor deposition synthesis. Consequently, NG@SnSe/C electrode can obtain a high reversible capacity of 650 mAh·g-1 at 0.05 A·g-1, a favorable rate performance of 287.8 mAh·g-1 at 5 A·g-1 and a superior cycle stability with a negligible capacity decay of 0.016% per cycle over 3, 200 cycles at 0.4 A·g-1. Theoretical calculations reveal that the nitrogen-doping in graphene can stabilize the NG@SnSe/C structure and improve the electrical conductivity. The reversible Na-ion storage mechanism of SnSe is further investigated by in-situ X-ray diffraction/ex-situ transmission electron microscopy. Furthermore, assembled sodium-ion hybrid capacitor full-cells comprising our NG@SnSe/C anode and an active carbon cathode harvest a high energy/power density of 115.5 Wh·kg-1/5, 742 W·kg-1, holding promise for next-generation energy storages.

Electronic Supplementary Material

Download File(s)
12274_2019_2551_MOESM1_ESM.pdf (2.5 MB)

References

1

Yang, Z. G. ; Zhang, J. L. ; Kintner-Meyer, M. C. W. ; Lu, X. C. ; Choi, D. ; Lemmon, J. P. ; Liu, J. Electrochemical energy storage for green grid. Chem. Rev. 2011, 111, 3577–3613.

2

Palomares, V. ; Serras, P. ; Villaluenga, I. ; Hueso, K. ; Carretero-González, J. ; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884–5901.

3

Slater, M. D. ; Kim, D. ; Lee, E. ; Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947–958.

4

Yabuuchi, N. ; Kubota, K. ; Dahbi, M. ; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.

5

Hwang, J. Y. ; Myung, S. T. ; Sun, Y. K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529–3614.

6

Qian, J. F. ; Chen, Y. ; Wu, L. ; Cao, Y. L. ; Ai, X. P. ; Yang, H. X. High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem. Commun. 2012, 48, 7070–7072.

7

Wen, Y. ; He, K. ; Zhu, Y. J. ; Han, F. D. ; Xu, Y. H. ; Matsuda, I. ; Ishii, Y. ; Cumings, J. ; Wang, C. S. Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun. 2014, 5, 4033.

8

Qu, B. H. ; Ma, C. Z. ; Ji, G. ; Xu, C. H. ; Xu, J. ; Meng, Y. S. ; Wang, T. H. ; Lee, J. Y. Layered SnS2-reduced graphene oxide composite-a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 2014, 26, 3854–3859.

9

Sun, J. ; Lee, H. W. ; Pasta, M. ; Yuan, H. T. ; Zheng, G. Y. ; Sun, Y. M. ; Li, Y. Z. ; Cui, Y. A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 2015, 10, 980–985.

10

Lu, Y. Y. ; Zhang, N. ; Jiang, S. ; Zhang, Y. D. ; Zhou, M. ; Tao, Z. L. ; Archer, L. A. ; Chen, J. High-capacity and ultrafast Na-ion storage of a self-supported 3D porous antimony persulfide–graphene foam architecture. Nano Lett. 2017, 17, 3668–3674.

11

Wang, X. G. ; Li, Q. C. ; Zhang, L. ; Hu, Z. L. ; Yu, L. H. ; Jiang, T. ; Lu, C. ; Yan, C. L. ; Sun, J. Y. ; Liu, Z. F. Caging Nb2O5 nanowires in PECVD-derived graphene capsules toward bendable sodium-ion hybrid supercapacitors. Adv. Mater. 2018, 30, 1800963

12

Lu, C. ; Li, Z. Z. ; Yu, L. H. ; Zhang, L. ; Xia, Z. ; Jiang, T. ; Yin, W. J. ; Dou, S. X. ; Liu, Z. F. ; Sun, J. Y. Nanostructured Bi2S3 encapsulated within three-dimensional N-doped graphene as active and flexible anodes for sodium-ion batteries. Nano Res. 2018, 11, 4614–4626.

13

Xia, Z. ; Sun, H. ; He, X. ; Sun, Z. T. ; Lu, C. ; Li, J. ; Peng, Y. ; Dou, S. X. ; Sun, J. Y. ; Liu, Z. F. In situ construction of CoSe2@vertical-oriented graphene arrays as self-supporting electrodes for sodium-ion capacitors and electrocatalytic oxygen evolution. Nano Energy 2019, 60, 385–393.

14

Wei, Z. X. ; Wang, L. ; Zhuo, M. ; Ni, W. ; Wang, H. X. ; Ma, J. M. Layered tin sulfide and selenide anode materials for Li- and Na-ion batteries. J. Mater. Chem. A 2018, 6, 12185–12214.

15

Liu, H. ; Guo, H. ; Liu, B. ; Liang, M. ; Lv, Z. ; Adair, K. R. ; Sun, X. L. Few-layer MoSe2 nanosheets with expanded (002) planes confined in hollow carbon nanospheres for ultrahigh-performance Na-ion batteries. Adv. Funct. Mater. 2018, 28, 1707480.

16

Wang, S. B. ; Fang, Y. J. ; Wang, X. ; Lou, X. W. Hierarchical microboxes constructed by SnS nanoplates coated with nitrogen-doped carbon for efficient sodium storage. Angew. Chem., Int. Ed. 2019, 58, 760–763.

17

Zhao, Y. ; Guo, B. B. ; Yao, Q. Q. ; Li, J. X. ; Zhang, J. S. ; Hou, K. ; Guan, L. H. A rational microstructure design of SnS2–carbon composites for superior sodium storage performance. Nanoscale 2018, 10, 7999–8008.

18

Kim, Y. ; Kim, Y. ; Park, Y. ; Jo, Y. N. ; Kim, Y. J. ; Choi, N. S. ; Lee, K. T. SnSe alloy as a promising anode material for Na-ion batteries. Chem. Commun. 2015, 51, 50–53.

19

Zhang, F. ; Xia, C. ; Zhu, J. J. ; Ahmed, B. ; Liang, H. F. ; Velusamy, D. B. ; Schwingenschlögl, U. ; Alshareef, H. N. SnSe2 2D anodes for advanced sodium ion batteries. Adv. Energy Mater. 2016, 6, 1601188.

20

Park, G. D. ; Lee, J. H. ; Kang, Y. C. Superior Na-ion storage properties of high aspect ratio SnSe nanoplates prepared by a spray pyrolysis process. Nanoscale 2016, 8, 11889–11896.

21

Wang, W. ; Li, P. H. ; Zheng, H. ; Liu, Q. ; Lv, F. ; Wu, J. D. ; Wang, H. ; Guo, S. J. Ultrathin layered snse nanoplates for low voltage, high-rate, and long-life alkali-ion batteries. Small 2017, 13, 1702228.

22

Yuan, S. ; Zhu, Y. H. ; Li, W. ; Wang, S. ; Xu, D. ; Li, L. ; Zhang, Y. ; Zhang, X. B. Surfactant-free aqueous synthesis of pure single-crystalline snse nanosheet clusters as anode for high energy- and power-density sodium-ion batteries. Adv. Mater. 2017, 29, 1602469.

23

Chen, R. S. ; Li, S. Z. ; Liu, J. Y. ; Li, Y. Y. ; Ma, F. ; Liang, J. S. ; Chen, X. ; Miao, Z. P. ; Han, J. T. ; Wang, T. Y. et al. Hierarchical Cu doped SnSe nanoclusters as high-performance anode for sodium-ion batteries. Electrochim. Acta 2018, 282, 973–980.

24

Ren, X. C. ; Wang, J. S. ; Zhu, D. M. ; Li, Q. W. ; Tian, W. F. ; Wang, L. ; Zhang, J. B. ; Miao, L. ; Chu, P. K. ; Huo, K. F. Sn-C bonding riveted SnSe nanoplates vertically grown on nitrogen-doped carbon nanobelts for highperformance sodium-ion battery anodes. Nano Energy 2018, 54, 322–330.

25

Zhou, X. Y. ; Chen, S. M. ; Yang, J. ; Bai, T. ; Ren, Y. P. ; Tian. H. Y. Metal–organic frameworks derived okra-like SnO2 encapsulated in nitrogen-doped graphene for lithium ion battery. ACS Appl. Mater. Interfaces 2017, 9, 14309–14318.

26

Xiong, X. H. ; Yang, C. H. ; Wang, G. H. ; Lin, Y. W. ; Ou, X. ; Wang, J. H. ; Zhao, B. T. ; Liu, M. L. ; Lin, Z. ; Huang, K. SnS nanoparticles electrostatically anchored on three-dimensional N-doped graphene as an active and durable anode for sodium-ion batteries. Energy Environ. Sci. 2017, 10, 1757–1763.

27

Yang, C. ; Feng, J. R. ; Lv, F. ; Zhou, J. H. ; Lin, C. F. ; Wang, K. ; Zhang, Y. L. ; Yang, Y. ; Wang, W. ; Li, J. B. et al. Metallic graphene-like VSe2 ultrathin nanosheets: Superior potassium-ion storage and their working mechanism. Adv. Mater. 2018, 30, 1800036.

28

Chao, D. L. ; Ouyang, B. ; Liang, P. ; Huong, T. T. T. ; Jia, G. C. ; Huang, H. ; Xia, X. H. ; Rawat, R. S. ; Fan, H. J. C-plasma of hierarchical graphene survives SnS bundles for ultrastable and high volumetric Na-ion storage. Adv. Mater. 2018, 30, 1804833.

29

Lu, Y. ; Lu, Y. Y. ; Niu, Z. Q. ; Chen, J. Graphene-based nanomaterials for sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1702469.

30

Hu, X. D. ; Sun, X. H. ; Yoo, S. J. ; Evanko, B. ; Fan, F. R. ; Cai, S. ; Zheng, C. M. ; Hu, W. B. ; Stucky, G. D. Nitrogen-rich hierarchically porous carbon as a high-rate anode material with ultra-stable cyclability and high capacity for capacitive sodium-ion batteries. Nano Energy 2019, 56, 828–839.

31

Bommier, C. ; Ji, X. L. Electrolytes, SEI formation, and binders: A review of nonelectrode factors for sodium-ion battery anodes. Small 2018, 14, 1703576.

32

Lan, Y. ; Zhou, J. B. ; Xu, K. L. ; Lu, Y. ; Zhang, K. L. ; Zhu, L. Q. ; Qian, Y. T. Synchronous synthesis of Kirkendall effect induced hollow FeSe2/C nanospheres as anodes for high performance sodium ion batteries. Chem. Commun. 2018, 54, 5704–5707.

33

Ge, P. ; Hou, H. S. ; Li, S. J. ; Huang, L. P. ; Ji, X. B. Three-dimensional hierarchical framework assembled by cobblestone-like CoSe2@C nanospheres for ultrastable sodium-ion storage. ACS Appl. Mater. Interfaces 2018, 10, 14716–14726.

34

Wan, M. ; Zeng, R. ; Chen, K. Y. ; Liu, G. X. ; Chen, W. L. ; Wang, L. L. ; Zhang, N. ; Xue, L. H. ; Zhang, W. X. ; Huang, Y. H. Fe7Se8 nanoparticles encapsulated by nitrogen-doped carbon with high sodium storage performance and evolving redox reactions. Energy Storage Mater. 2018, 10, 114–121.

35

Yang, X. M. ; Zhang, J. L. ; Wang, Z. G. ; Wang, H. K. ; Zhi, C. Y. ; Yu, D. Y. W. ; Rogach, A. Carbon-supported nickel selenide hollow nanowires as advanced anode materials for sodium-ion batteries. Small 2017, 14, 1702669.

36

Tang, C. J. ; Wei, X. J. ; Cai, X. Y. ; An, Q. Y. ; Hu, P. ; Sheng, J. Z. ; Zhu, J. X. ; Chou, S. L. ; Wu, L. M. ; Mai, L. Q. ZnSe microsphere/multiwalled carbon nanotube composites as high-rate and long-life anodes for sodium-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 19626–19632.

37

Yin, H. ; Qu, H. Q. ; Liu, Z. T. ; Jiang, R. Z. ; Li, C. ; Zhu, M. Q. Long cycle life and high rate capability of three dimensional CoSe2 grain-attached carbon nanofibers for flexible sodium-ion batteries. Nano Energy 2019, 58, 715–723.

38

Zhou, J. ; Chen, J. C. ; Chen, M. X. ; Wang, J. ; Liu, X. Z. ; Wei, B. ; Wang, Z. C. ; Li, J. J. ; Gu, L. ; Zhang, Q. H. et al. Few-layer bismuthene with anisotropic expansion for high-areal-capacity sodium-ion batteries. Adv. Mater. 2019, 31, 1807874.

39

Wu, C. ; Dou, S. X. ; Yu, Y. The state and challenges of anode materials based on conversion reactions for sodium storage. Small 2018, 14, 1703671.

40

Yu, D. X. ; Pang, Q. ; Gao, Y. ; Wei, Y. Y. ; Wang, C. Z. ; Chen, G. ; Du, F. Hierarchical flower-like VS2 nanosheets–a high rate-capacity and stable anode material for sodium-ion battery. Energy Storage Mater. 2018, 11, 1–7.

41

Zhou, G. M. ; Tian, H. Z. ; Jin, Y. ; Tao, X. Y. ; Liu, B. F. ; Zhang, R. F. ; Seh, Z. W. ; Zhuo, D. ; Liu, Y. Y. ; Sun, J. et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. Proc. Natl. Acad. Sci. USA 2017, 114, 840–845.

42

Augustyn, V. ; Come, J. ; Lowe, M. A. ; Kim, J. W. ; Taberna, P. L. ; Tolbert, S. H. ; Abruña, H. D. ; Simon, P. ; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522.

43

Wang, J. ; Polleux, J. ; Lim, J. ; Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (Anatase) nanoparticles. J. Phys. Chem. C 2007, 111, 14925–14931.

44

Shi, H. X. ; Fang, Z. W. ; Zhang, X. ; Li, F. ; Tang, Y. W. ; Zhou, Y. M. ; Wu, P. ; Yu, G. H. Double-network nanostructured hydrogel-derived ultrafine Sn–Fe alloy in three-dimensional carbon framework for enhanced lithium storage. Nano Lett. 2018, 18, 3193–3198.

45

Zhao, X. ; Cai, W. ; Yang, Y. ; Song, X. D. ; Neale, Z. ; Wang, H. E. ; Sui, J. H. ; Cao, G. Z. MoSe2 nanosheets perpendicularly grown on graphene with Mo–C bonding for sodium-ion capacitors. Nano Energy 2018, 47, 224–234.

46

Li, Y. Z. ; Wang, H. W. ; Huang, B. J. ; Wang, L. B. ; Wang, R. ; He, B. B. ; Gong, Y. S. ; Hu, X. L. Mo2C-induced solid-phase synthesis of ultrathin MoS2 nanosheet arrays on bagasse-derived porous carbon frameworks for high-energy hybrid sodium-ion capacitors. J. Mater. Chem. A 2018, 6, 14742–14751.

Nano Research
Pages 3051-3058
Cite this article:
Lu C, Li Z, Xia Z, et al. Confining MOF-derived SnSe nanoplatelets in nitrogen-doped graphene cages via direct CVD for durable sodium ion storage. Nano Research, 2019, 12(12): 3051-3058. https://doi.org/10.1007/s12274-019-2551-0
Topics:

770

Views

76

Crossref

N/A

Web of Science

77

Scopus

14

CSCD

Altmetrics

Received: 05 September 2019
Revised: 08 October 2019
Accepted: 23 October 2019
Published: 04 November 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return