AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Magnetically recyclable Sm2Co17/Cu catalyst to chemoselectively reduce the 3-nitrostyrene into 3-vinylaniline under room temperature

Zhenhui Ma1Hu Liu2Ming Yue1( )
College of Materials Science and EngineeringKey Laboratory of Advanced Functional MaterialsMinistry of Education of ChinaBeijing University of TechnologyBeijing100124China
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001China
Show Author Information

Graphical Abstract

Abstract

Using non-noble metal catalysts to chemoselectively reduce the 3-nitrostyrene into 3-vinylaniline is extremely attractive due to the important applications of aromatic amines. However, the separation and recycle of catalytic particles to sustainably catalyze are still challenging on account of their small size. In this communication, we report a novel magnetically recyclable catalyst of Sm2Co17/Cu to chemoselectively reduce 3-nitrostyrene into 3-vinylaniline by activating ammonia borane (AB) to yield hydrogen. The Sm2Co17/Cu, composited of 180 nm Sm2Co17 nanomagnet and 10 nm Cu catalyst nanoparticles, shows a high conversion (98%) and a high selectivity (99%) for 3-nitrostyrene under ultrasonic concussion. More importantly, they are easily collected by self-separation method without any magnetic field. As a consequence, the excellent recyclable feature is acquired even underwent 10 cycles. Our approach provides a green strategy to synthesize magnetically recyclable catalysts.

Electronic Supplementary Material

Download File(s)
12274_2019_2555_MOESM1_ESM.pdf (1.5 MB)

References

1

Wienhöfer, G.; Sorribes, I.; Boddien, A.; Westerhaus, F.; Junge, K.; Junge, H.; Llusar, R.; Beller, M. General and selective iron-catalyzed transfer hydrogenation of nitroarenes without base. J. Am. Chem. Soc. 2011, 133, 12875–12879.

2

Pingen, D.; Müller, C.; Vogt, D. Direct amination of secondary alcohols using ammonia. Angew. Chem., Int. Ed. 2010, 49, 8130–8133.

3

Tafesh, A. M.; Weiguny, J. A review of the selective catalytic reduction of aromatic nitro compounds into aromatic amines, isocyanates, carbamates, and ureas using CO. Chem. Rev. 1996, 96, 2035–2052.

4

Ghimire, P. P.; Zhang, L. P.; Kinga, U. A.; Guo, Q. Y.; Jiang, B. J.; Jaroniec, M. Development of nickel-incorporated MCM-41–carbon composites and their application in nitrophenol reduction. J. Mater. Chem. A 2019, 7, 9618–9628.

5

Song, J. J.; Huang, Z. F.; Pan, L.; Li, K.; Zhang, X. W.; Wang, L.; Zou, J. J. Review on selective hydrogenation of nitroarene by catalytic, photocatalytic and electrocatalytic reactions. Appl. Catal. B: Environ. 2018, 227, 386–408.

6

Tan, Y.; Liu, X. Y.; Zhang, L. L.; Wang, A. Q.; Li, L.; Pan, X. L.; Miao, S.; Haruta, M.; Wei, H. S.; Wang, H. et al. ZnAl-hydrotalcite-supported Au25 nanoclusters as precatalysts for chemoselective hydrogenation of 3-nitrostyrene. Angew. Chem., Int. Ed. 2017, 56, 2709–2713.

7

Dhiman, M.; Polshettiwar, V. Ultrasmall nanoparticles and pseudo-single atoms of platinum supported on fibrous nanosilica (KCC-1/Pt): Engineering selectivity of hydrogenation reactions. J. Mater. Chem. A 2016, 4, 12416–12424.

8

Furukawa, S.; Yoshida, Y.; Komatsu, T. Chemoselective hydrogenation of nitrostyrene to aminostyrene over Pd- and Rh-based intermetallic compounds. ACS Catal. 2014, 4, 1441–1450.

9

Wang, L.; Zhang, J.; Wang, H.; Shao, Y.; Liu, X. H.; Wang, Y. Q.; Lewis, J. P.; Xiao, F. S. Activity and selectivity in nitroarene hydrogenation over Au nanoparticles on the edge/corner of anatase. ACS Catal. 2016, 6, 4110–4116.

10

Camacho-Bunquin, J.; Ferrandon, M.; Sohn, H.; Yang, D. L.; Liu, C.; Ignacio-de Leon, P. A.; Perras, F. A.; Pruski, M.; Stair, P. C.; Delferro, M. Chemoselective hydrogenation with supported organoplatinum(IV) catalyst on Zn(II)-modified silica. J. Am. Chem. Soc. 2018, 140, 3940–3951.

11

Wei, H. S.; Liu, X. Y.; Wang, A. Q.; Zhang, L. L.; Qiao, B. T.; Yang, X. F.; Huang, Y. Q.; Miao, S.; Liu, J. Y; Zhang, T. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 2014, 5, 5634.

12

Tamiolakis, I.; Fountoulaki, S.; Vordos, N.; Lykakis, I. N.; Armatas, G. S. Mesoporous Au–TiO2 nanoparticle assemblies as efficient catalysts for the chemoselective reduction of nitro compounds. J. Mater. Chem. A 2013, 1, 14311–14319.

13

Corma, A.; Serna, P.; Concepcion, P.; Calvino, J. J. Transforming nonselective into chemoselective metal catalysts for the hydrogenation of substituted nitroaromatics. J. Am. Chem. Soc. 2008, 130, 8748–8753.

14

Jagadeesh, R. V.; Surkus, A. E.; Junge, H.; Pohl, M. M.; Radnik, J.; Rabeah, J.; Huan, H. M.; Schunemann, V.; Brückner, A.; Beller, M. Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Science 2013, 342, 1073–1076.

15

Westerhaus, F. A.; Jagadeesh, R. V.; Wienhöfer, G.; Pohl, M. M.; Radnik, J.; Surkus, A. E.; Rabeah, J.; Junge, K.; Junge, H.; Nielsen, M. et al. Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes. Nat. Chem. 2013, 5, 537–543.

16

Yang, B.; Zhang, Q. K.; Ma, X. Y.; Kang, J. Q.; Shi, J. M.; Tang, B. Preparation of a magnetically recoverable nanocatalyst via cobalt-doped Fe3O4 nanoparticles and its application in the hydrogenation of nitroarenes. Nano Res. 2016, 9, 1879–1890.

17

Assa, F.; Jafarizadeh-Malmiri, H.; Ajamein; H.; Anarjan; N.; Vaghari, H.; Sayyar, Z.; Berenjian, A. A biotechnological perspective on the application of iron oxide nanoparticles. Nano Res. 2016, 9, 2203–2225.

18

Ai, Y. J; Hu, Z. N.; Shao, Z. X.; Qi, L.; Liu, L.; Zhou, J. J.; Sun, H. B.; Liang, Q. L. Egg-like magnetically immobilized nanospheres: A long-lived catalyst model for the hydrogen transfer reaction in a continuous-flow reactor. Nano Res. 2018, 11, 287–299.

19

Qin, Z.; Ma, Z. H.; Zhi, J. K.; Fu, Y. L. A facile synthesis of magnetite single-crystal particles by employing GO sheets as template for promising application in magnetic fluid. Rare Met. 2019, 38, 764–769.

20

Ma, Z. H.; Tian, H.; Cong, L. Y.; Wu, Q.; Yue, M.; Sun, S. H. A flamereaction method for the large-scale synthesis of high-performance SmxCoy nanomagnets. Angew. Chem., Int. Ed. 2019, 58, 14509–14512.

21

Ma, Z. H.; Yue, M.; Wu, Q.; Li, C. L.; Yu, Y. S. Designing shape anisotropic SmCo5 particles by chemical synthesis to reveal the morphological evolution mechanism. Nanoscale 2018, 10, 10377–10382.

22

Zhang, T. L.; Liu, H. Y.; Ma, Z. H.; Jiang, C. B. Single crystal growth and magnetic properties of 2: 17-type SmCo magnets. J. Alloys Compd. 2015, 637, 253–256.

23

Ma, Z. H.; Zhang, T. L.; Wang, H.; Jiang, C. B. Synthesis of SmCo5 nanoparticles with small size and high performance by hydrogenation technique. Rare Met. 2018, 37, 1021–1026.

24

Ma, Z. H.; Zhang, T. L.; Jiang, C. B. A facile synthesis of high performance SmCo5 nanoparticles. Chem. Eng. J. 2015, 264, 610–616.

25

Ma, Z. H.; Yang, S. X.; Zhang, T. L.; Jiang, C. B. The chemical synthesis of SmCo5 single-crystal particles with small size and high performance. Chem. Eng. J. 2016, 304, 993–999.

26

Ma, Z. H.; Liang, J. M.; Ma, W.; Cong, L. Y.; Wu, Q.; Yue, M. Chemically synthesized anisotropic SmCo5 nanomagnets with a large energy product. Nanoscale 2019, 11, 12484–12488.

27

Shen, M. Q.; Liu, H.; Yu, C.; Yin, Z. Y.; Muzzio, M.; Li, J. R.; Xi, Z.; Yu, Y. S.; Sun, S. H. Room-temperature chemoselective reduction of 3-nitrostyrene to 3-vinylaniline by ammonia borane over Cu nanoparticles. J. Am. Chem. Soc. 2018, 140, 16460–16463.

28

Liu, H.; Yu, Y. S.; Yang, W. W.; Lei, W. J.; Gao, M. Y.; Guo, S. J. High-density defects on PdAg nanowire networks as catalytic hot spots for efficient dehydrogenation of formic acid and reduction of nitrate. Nanoscale 2017, 9, 9305–9309.

29

Liu, H.; Guo, Y.; Yu, Y. S.; Yang, W. W.; Shen, M. Q.; Liu, X. Y.; Geng, S.; Li, J. R.; Yu, C.; Yin, Z. Y. et al. Surface Pd-rich PdAg nanowires as highly efficient catalysts for dehydrogenation of formic acid and subsequent hydrogenation of adiponitrile. J. Mater. Chem. A 2018, 6, 17323–17328.

30

Liu, H.; Liu, X. Y.; Yu, Y. S.; Yang, W. W.; Li, J.; Feng, M.; Li, H. B. Bifunctional networked Ag/AgPd core/shell nanowires for the highly efficient dehydrogenation of formic acid and subsequent reduction of nitrate and nitrite in water. J. Mater. Chem. A 2018, 6, 4611–4616.

31

Chen, G. X.; Xu, C. F.; Huang, X. Q.; Ye, J. Y.; Gu, L.; Li, G.; Tang, Z. C.; Wu, B. H.; Yang, H. Y.; Zhao, Z. P. et al. Interfacial electronic effects control the reaction selectivity of platinum catalysts. Nat. Mater. 2016, 15, 564–569.

32

Liu, H.; Huang, B. L.; Zhou, J. H.; Wang, K.; Yu, Y. S.; Yang, W. W.; Guo, S. J. Enhanced electron transfer and light absorption on imino polymer capped PdAg nanowire networks for efficient room-temperature dehydrogenation of formic acid. J. Mater. Chem. A 2018, 6, 1979–1984.

33

Han, A. J.; Zhang, J.; Sun, W. M.; Chen, W. X.; Zhang, S. L.; Han, Y. H.; Feng, Q. C.; Zheng, L. R.; Gu, L.; Chen C. et al. Isolating contiguous Pt atoms and forming Pt-Zn intermetallic nanoparticles to regulate selectivity in 4-nitrophenylacetylene hydrogenation. Nat. Commun. 2019, 10, 3787.

Nano Research
Pages 3085-3088
Cite this article:
Ma Z, Liu H, Yue M. Magnetically recyclable Sm2Co17/Cu catalyst to chemoselectively reduce the 3-nitrostyrene into 3-vinylaniline under room temperature. Nano Research, 2019, 12(12): 3085-3088. https://doi.org/10.1007/s12274-019-2555-9
Topics:

793

Views

22

Crossref

N/A

Web of Science

22

Scopus

4

CSCD

Altmetrics

Received: 26 August 2019
Revised: 27 October 2019
Accepted: 28 October 2019
Published: 07 November 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return