AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

A mini review on two-dimensional nanomaterial assembly

Zhiwei Fang1,§Qiyu Xing2,§Desiree Fernandez1Xiao Zhang1Guihua Yu1( )
Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin, Austin , Texas78712, USA
School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China

§ Zhiwei Fang and Qiyu Xing contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Two-dimensional (2D) nanomaterials have attracted a great deal of attention since the discovery of graphene in 2004, due to their intriguing physicochemical properties and wide-ranging applications in catalysis, energy-related devices, electronics and optoelectronics. To maximize the potential of 2D nanomaterials for their technological applications, controlled assembly of 2D nanobulding blocks into integrated systems is critically needed. This mini review summarizes the reported strategies of 2D materials-based assembly into integrated functional nanostructures, from in-situ assembly method to post-synthesis assembly. The applications of 2D assembled integrated structures are also covered, especially in the areas of energy, electronics and sensing, and we conclude with discussion on the remaining challenges and potential directions in this emerging field.

References

[1]
Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768-779.
[2]
Miró, P.; Audiffred, M.; Heine, T. An atlas of two-dimensional materials. Chem. Soc. Rev. 2014, 43, 6537-6554.
[3]
Sun, Y. F.; Gao, S.; Lei, F. C.; Xiao, C.; Xie, Y. Ultrathin two-dimensional inorganic materials: New opportunities for solid state nanochemistry. Acc. Chem. Res. 2015, 48, 3-12.
[4]
Sun, Y. F.; Gao, S.; Lei, F. C.; Xie, Y. Atomically-thin two-dimensional sheets for understanding active sites in catalysis. Chem. Soc. Rev. 2015, 44, 623-636.
[5]
Zhu, Y.; Peng, L. L.; Fang, Z. W.; Yan, C. S.; Zhang, X.; Yu, G. H. Structural engineering of 2D nanomaterials for energy storage and catalysis. Adv. Mater. 2018, 30, 1706347.
[6]
Peng, L. L.; Zhu, Y.; Chen, D. H.; Ruoff, R. S.; Yu, G. H. Two-dimensional materials for beyond-lithium-ion batteries. Adv. Energy Mater. 2016, 6, 1600025.
[7]
Bonaccorso, F.; Colombo, L.; Yu, G. H.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501.
[8]
Peng, L. L.; Zhu, Y.; Li, H. S.; Yu, G. H. Chemically integrated inorganic-graphene two-dimensional hybrid materials for flexible energy storage devices. Small 2016, 12, 6183-6199.
[9]
Peng, L. L.; Peng, X.; Liu, B. R.; Wu, C. Z.; Xie, Y.; Yu, G. H. Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano Lett. 2013, 13, 2151-2157.
[10]
Xiong, P.; Liu, B. R.; Teran, V.; Zhao, Y.; Peng, L. L.; Wang, X.; Yu, G. H. Chemically integrated two-dimensional hybrid zinc manganate/ graphene nanosheets with enhanced lithium storage capability. ACS Nano 2014, 8, 8610-8616.
[11]
Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263-275.
[12]
Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033.
[13]
Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphene-like two-dimensional materials. Chem. Rev. 2013, 113, 3766-3798.
[14]
Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898-2926.
[15]
Guo, Y.; Zhong, M. J.; Fang, Z. W.; Wan, P. B.; Yu, G. H. A wearable transient pressure sensor made with mxene nanosheets for sensitive broad-range human-machine interfacing. Nano Lett. 2019, 19, 1143-1150.
[16]
Yan, C. S.; Fang, Z. W.; Lv, C. D.; Zhou, X.; Chen, G.; Yu, G. H. Significantly improving lithium-ion transport via conjugated anion intercalation in inorganic layered hosts. ACS Nano 2018, 12, 8670-8677.
[17]
Zhu, Y.; Peng, L. L.; Chen, D. H.; Yu, G. H. Intercalation pseudocapacitance in ultrathin VOPO4 nanosheets: Toward high-rate alkali-ion-based electrochemical energy storage. Nano Lett. 2016, 16, 742-747.
[18]
Shehzad, K.; Xu, Y.; Gao, C.; Duan, X. F. Three-dimensional macro-structures of two-dimensional nanomaterials. Chem. Soc. Rev. 2016, 45, 5541-5588.
[19]
Yan, C. S.; Lv, C. D.; Zhu, Y.; Chen, G.; Sun, J. X.; Yu, G. H. Engineering 2D nanofluidic Li-ion transport channels for superior electrochemical energy storage. Adv. Mater. 2017, 29, 1703909.
[20]
Dickinson, E.; Leser, M. E. Food Colloids: Self-assembly and Material Science; RSC Publishing: Cambridge, UK, 2007.
[21]
Huang, X.; Tan, C. L.; Yin, Z. Y.; Zhang, H. 25th anniversary article: Hybrid nanostructures based on two-dimensional nanomaterials. Adv. Mater. 2014, 26, 2185-2204.
[22]
Kong, B. S.; Geng, J. X.; Jung, H. T. Layer-by-layer assembly of graphene and gold nanoparticles by vacuum filtration and spontaneous reduction of gold ions. Chem. Commun. 2009, 2174-2176.
[23]
Wu, C. Z.; Lu, X. L.; Peng, L. L.; Xu, K.; Peng, X.; Huang, J. L.; Yu, G. H.; Xie, Y. Two-dimensional vanadyl phosphate ultrathin nanosheets for high energy density and flexible pseudocapacitors. Nat. Commun. 2013, 4, 2431.
[24]
Shibata, T.; Fukuda, K.; Ebina, Y.; Kogure, T.; Sasaki, T. One-nanometer-thick seed layer of unilamellar nanosheets promotes oriented growth of oxide crystal films. Adv. Mater. 2008, 20, 231-235.
[25]
Ariga, K.; Yamauchi, Y.; Mori, T.; Hill, J. P. 25th anniversary article: What can be done with the Langmuir-Blodgett method? Recent developments and its critical role in materials science. Adv. Mater. 2013, 25, 6477-6512.
[26]
Ariga, K.; Yamauchi, Y.; Rydzek, G.; Ji, Q. M.; Yonamine, Y.; Wu, K. C. W.; Hill, J. P. Layer-by-layer nanoarchitectonics: Invention, innovation, and evolution. Chem. Lett. 2014, 43, 36-68.
[27]
Hu, L. F.; Chen, M.; Fang, X. S.; Wu, L. M. Oil-water interfacial self-assembly: A novel strategy for nanofilm and nanodevice fabrication. Chem. Soc. Rev. 2012, 41, 1350-1362.
[28]
Wu, D. Q.; Zhang, F.; Liang, H. W.; Feng, X. L. Nanocomposites and macroscopic materials: Assembly of chemically modified graphene sheets. Chem. Soc. Rev. 2012, 41, 6160-6177.
[29]
Mousty, C.; Prévot, V. Hybrid and biohybrid layered double hydroxides for electrochemical analysis. Anal. Bioanal. Chem. 2013, 405, 3513-3523.
[30]
Ma, R. Z.; Sasaki, T. Organization of artificial superlattices utilizing nanosheets as a building block and exploration of their advanced functions. Annu. Rev. Mater. Res. 2015, 45, 111-127.
[31]
Xiang, Y.; Lu, S. F.; Jiang, S. P. Layer-by-layer self-assembly in the development of electrochemical energy conversion and storage devices from fuel cells to supercapacitors. Chem. Soc. Rev. 2012, 41, 7291-7321.
[32]
Tang, Z. Y.; Zhang, Z. L.; Wang, Y.; Glotzer, S. C.; Kotov, N. A. Self-assembly of CdTe nanocrystals into free-floating sheets. Science 2006, 314, 274-278.
[33]
Xi, Y. N.; Dong, B. H.; Dong, Y. N.; Mao, N.; Ding, L.; Shi, L.; Gao, R. J.; Liu, W.; Su, G.; Cao, L. X. Well-defined, nanostructured, amorphous metal phosphate as electrochemical pseudocapacitor materials with high capacitance. Chem. Mater. 2016, 28, 1355-1362.
[34]
Zhang, X. D.; Liu, Q. H.; Meng, L. J.; Wang, H.; Bi, W. T.; Peng, Y. H.; Yao, T.; Wei, S. Q.; Xie, Y. In-plane coassembly route to atomically thick inorganic-organic hybrid nanosheets. ACS Nano 2013, 7, 1682-1688.
[35]
Sun, Z. Q.; Liao, T.; Dou, Y. H.; Hwang, S. M.; Park, M. S.; Jiang, L.; Kim, J. H.; Dou, S. X. Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets. Nat. Commun. 2014, 5, 3813.
[36]
Peng, L. L.; Xiong, P.; Ma, L.; Yuan, Y. F.; Zhu, Y.; Chen, D. H.; Luo, X. Y.; Lu, J.; Amine, K.; Yu, G. H. Holey two-dimensional transition metal oxide nanosheets for efficient energy storage. Nat. Commun. 2017, 8, 15139.
[37]
Peng, L. L.; Fang, Z. W.; Li, J.; Wang, L.; Bruck, A. M.; Zhu, Y.; Zhang, Y. M.; Takeuchi, K. J.; Marschilok, A. C.; Stach, E. A. et al. Two-dimensional holey nanoarchitectures created by confined self-assembly of nanoparticles via block copolymers: From synthesis to energy storage property. ACS Nano 2018, 12, 820-828.
[38]
Peng, L. L.; Fang, Z. W.; Zhu, Y.; Yan, C. S.; Yu, G. H. Holey 2D nanomaterials for electrochemical energy storage. Adv. Energy Mater. 2018, 8, 1702179.
[39]
Chen, D. H.; Peng, L. L.; Yuan, Y. F.; Zhu, Y.; Fang, Z. W.; Yan, C. S.; Chen, G.; Shahbazian-Yassar, R.; Lu, J.; Amine, K. et al. Two-dimensional holey Co3O4 nanosheets for high-rate alkali-ion batteries: From rational synthesis to in situ probing. Nano Lett. 2017, 17, 3907-3913.
[40]
Fang, Z. W.; Peng, L. L.; Qian, Y. M.; Zhang, X.; Xie, Y. J.; Cha, J. J.; Yu, G. H. Dual tuning of Ni-Co-A (A = P, Se, O) nanosheets by anion substitution and holey engineering for efficient hydrogen evolution. J. Am. Chem. Soc. 2018, 140, 5241-5247.
[41]
Zhang, X.; Bruck, A. M.; Zhu, Y.; Peng, L. L.; Li, J.; Stach, E.; Zhu, Y. M.; Takeuchi, K. J.; Takeuchi, E. S.; Marschilok, A. C. et al. Probing enhanced lithium-ion transport kinetics in 2D holey nanoarchitectured electrodes. Nano Futures 2018, 2, 035008.
[42]
Shi, Z. L.; Lin, N. Porphyrin-based two-dimensional coordination kagome lattice self-assembled on a Au(111) surface. J. Am. Chem. Soc. 2009, 131, 5376-5377.
[43]
Katsonis, N.; Marchenko, A.; Fichou, D. Substrate-induced pairing in 2,3,6,7,10,11-hexakis-undecalkoxy-triphenylene self-assembled monolayers on Au(111). J. Am. Chem. Soc. 2003, 125, 13682-13683.
[44]
Zhu, H. O.; Xiao, C.; Cheng, H.; Grote, F.; Zhang, X. D.; Yao, T.; Li, Z.; Wang, C. M.; Wei, S. Q.; Lei, Y. et al. Magnetocaloric effects in a freestanding and flexible graphene-based superlattice synthesized with a spatially confined reaction. Nat. Commun. 2014, 5, 3960.
[45]
Zhu, Y.; Qian, Y. M.; Ju, Z. Y.; Peng, L. L.; Yu, G. H. Solvent-dependent intercalation and molecular configurations in metallocene-layered crystal superlattices. Nano Lett. 2018, 18, 6071-6075.
[46]
Ma, W.; Ma, R. Z.; Wang, C. X.; Liang, J. B.; Liu, X. H.; Zhou, K. C.; Sasaki, T. A superlattice of alternately stacked Ni-Fe hydroxide nanosheets and graphene for efficient splitting of water. ACS Nano 2015, 9, 1977-1984.
[47]
Son, J. S.; Wen, X. D.; Joo, J.; Chae, J.; Baek, S. I.; Park, K.; Kim, J. H.; An, K.; Yu, J. H.; Kwon, S. G. et al. Large-scale soft colloidal template synthesis of 1.4 nm thick cdse nanosheets. Angew. Chem., Int. Ed. 2009, 48, 6861-6864.
[48]
Du, Y. P.; Yin, Z. Y.; Zhu, J. X.; Huang, X.; Wu, X. J.; Zeng, Z. Y.; Yan, Q. Y.; Zhang, H. A general method for the large-scale synthesis of uniform ultrathin metal sulphide nanocrystals. Nat. Commun. 2012, 3, 1177.
[49]
Tan, C. L.; Zeng, Z. Y.; Huang, X.; Rui, X. H.; Wu, X. J.; Li, B.; Luo, Z. M.; Chen, J. Z.; Chen, B.; Yan, Q. Y. et al. Liquid-phase epitaxial growth of two-dimensional semiconductor hetero-nanostructures. Angew. Chem., Int. Ed. 2015, 54, 1841-1845.
[50]
Sun, X.; Deng, H. T.; Zhu, W. G.; Yu, Z.; Wu, C. Z.; Xie, Y. Interface engineering in two-dimensional heterostructures: Towards an advanced catalyst for ullmann couplings. Angew. Chem., Int. Ed. 2016, 55, 1704-1709.
[51]
Shim, J.; Yun, J. M.; Yun, T.; Kim, P.; Lee, K. E.; Lee, W. J.; Ryoo, R.; Pine, D. J.; Yi, G. R.; Kim, S. O. Two-minute assembly of pristine large-area graphene based films. Nano Lett. 2014, 14, 1388-1393.
[52]
Li, X. M.; Yang, T. T.; Yang, Y.; Zhu, J.; Li, L.; Alam, F. E.; Li, X.; Wang, K. L.; Cheng, H. Y.; Lin, C. T. et al. Large-area ultrathin graphene films by single-step marangoni self-assembly for highly sensitive strain sensing application. Adv. Funct. Mater. 2016, 26, 1322-1329.
[53]
Cote, L. J.; Kim, F.; Huang, J. X. Langmuir-Blodgett assembly of graphite oxide single layers. J. Am. Chem. Soc. 2009, 131, 1043-1049.
[54]
Gattás-Asfura, K. M.; Constantine, C. A.; Lynn, M. J.; Thimann, D. A.; Ji, X. J.; Leblanc, R. M. Characterization and 2D self-assembly of CdSe quantum dots at the air-water interface. J. Am. Chem. Soc. 2005, 127, 14640-14646.
[55]
Tao, A.; Kim, F.; Hess, C.; Goldberger, J.; He, R. R.; Sun, Y. G.; Xia, Y. N.; Yang, P D.. Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett. 2003, 3, 1229-1233.
[56]
Kim, F.; Kwan, S.; Akana, J.; Yang, P. D. Langmuir-Blodgett nanorod assembly. J. Am. Chem. Soc. 2001, 123, 4360-4361.
[57]
Zheng, Q. B.; Ip, W. H.; Lin, X. Y.; Yousefi, N.; Yeung, K. K.; Li, Z. G.; Kim, J. K. Transparent conductive films consisting of ultralarge graphene sheets produced by Langmuir-Blodgett assembly. ACS Nano 2011, 5, 6039-6051.
[58]
Zhu, Y.; Peng, L. L.; Zhu, W. N.; Akinwande, D.; Yu, G. H. Layer-by-layer assembly of two-dimensional colloidal Cu2Se nanoplates and their layer-dependent conductivity. Chem. Mater. 2016, 28, 4307-4314.
[59]
Yu, X. Y.; Prévot, M. S.; Guijarro, N.; Sivula, K. Self-assembled 2D WSe2 thin films for photoelectrochemical hydrogen production. Nat. Commun. 2015, 6, 7596.
[60]
Biswas, S.; Drzal, L. T. A novel approach to create a highly ordered monolayer film of graphene nanosheets at the liquid-liquid interface. Nano Lett. 2009, 9, 167-172.
[61]
Ma, R. Z.; Osada, M.; Hu, L. F.; Sasaki, T. Self-assembled nanofilm of monodisperse cobalt hydroxide hexagonal platelets: Topotactic conversion into oxide and resistive switching. Chem. Mater. 2010, 22, 6341-6346.
[62]
Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419-425.
[63]
Gao, Q. S.; Zhang, W. B.; Shi, Z. P.; Yang, L. C.; Tang, Y. Structural design and electronic modulation of transition-metal-carbide electrocatalysts toward efficient hydrogen evolution. Adv. Mater. 2019, 31, 1802880.
[64]
Xie, C. Y.; Jiang, S. L.; Zou, X. L.; Sun, Y. W.; Zhao, L. Y.; Hong, M.; Chen, S. L.; Huan, Y. H.; Shi, J. P.; Zhou, X. B. et al. Space-confined growth of monolayer ReSe2 under a graphene layer on Au foils. Nano Res. 2019, 12, 149-157.
[65]
Yang, W.; Chen, G. R.; Shi, Z. W.; Liu, C. C.; Zhang, L. C.; Xie, G. B.; Cheng, M.; Wang, D. M.; Yang, R.; Shi, D. X. et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 2013, 12, 792-797.
[66]
Kim, S. M.; Hsu, A.; Araujo, P. T.; Lee, Y. H.; Palacios, T.; Dresselhaus, M.; Idrobo, J. C.; Kim, K. K.; Kong, J. Synthesis of patched or stacked graphene and hBN flakes: A route to hybrid structure discovery. Nano Lett. 2013, 13, 933-941.
[67]
Wang, M.; Jang, S. K.; Jang, W. J.; Kim, M.; Park, S. Y.; Kim, S. W.; Kahng, S. J.; Choi, J. Y.; Ruoff, R. S.; Song, Y. J. et al. A platform for large-scale graphene electronics-CVD growth of single-layer graphene on CVD-grown hexagonal boron nitride. Adv. Mater. 2013, 25, 2746-2752.
[68]
Huang, C. M.; Wu, S. F.; Sanchez, A. M.; Peters, J. J. P.; Beanland, R.; Ross, J. S.; Rivera, P.; Yao, W.; Cobden, D. H.; Xu, X. D. Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. Nat. Mater. 2014, 13, 1096-1101.
[69]
Li, M. Y.; Shi, Y. M.; Cheng, C. C.; Lu, L. S.; Lin, Y. C.; Tang, H. L.; Tsai, M. L.; Chu, C. W.; Wei, K. H.; He, J. H. et al. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science 2015, 349, 524-528.
[70]
Chen, P.; Zhang, Z. W.; Duan, X. D.; Duan, X. F. Chemical synthesis of two-dimensional atomic crystals, heterostructures and superlattices. Chem. Soc. Rev. 2018, 47, 3129-3151.
[71]
Gong, Y. J.; Lin, J. H.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135-1142.
[72]
Tan, C. L.; Zhang, H. Epitaxial growth of hetero-nanostructures based on ultrathin two-dimensional nanosheets. J. Am. Chem. Soc. 2015, 137, 12162-12174.
[73]
Zhang, Z. W.; Chen, P.; Duan, X. D.; Zang, K. T.; Luo, J.; Duan, X. F. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 2017, 357, 788-792.
[74]
Srivastava, S.; Kotov, N. A. Composite layer-by-layer (LBL) assembly with inorganic nanoparticles and nanowires. Acc. Chem. Res. 2008, 41, 1831-1841.
[75]
Xi, Q.; Chen, X.; Evans, D. G.; Yang, W. S. Gold nanoparticle-embedded porous graphene thin films fabricated via layer-by-layer self-assembly and subsequent thermal annealing for electrochemical sensing. Langmuir 2012, 28, 9885-9892.
[76]
Javey, A.; Nam, S.; Friedman, R. S.; Yan, H.; Lieber, C. M. Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. Nano Lett. 2007, 7, 773-777.
[77]
Sasaki, T.; Ebina, Y.; Tanaka, T.; Harada, M.; Watanabe, M.; Decher, G. Layer-by-layer assembly of titania nanosheet/polycation composite films. Chem. Mater. 2001, 13, 4661-4667.
[78]
Xiao, F. X.; Miao, J. W.; Liu, B. Layer-by-layer self-assembly of CdS quantum dots/graphene nanosheets hybrid films for photoelectrochemical and photocatalytic applications. J. Am. Chem. Soc. 2014, 136, 1559-1569.
[79]
Kang, Q.; Vernisse, L.; Remsing, R. C.; Thenuwara, A. C.; Shumlas, S. L.; McKendry, I. G.; Klein, M. L.; Borguet, E.; Zdilla, M. J.; Strongin, D. R. Effect of interlayer spacing on the activity of layered manganese oxide bilayer catalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2017, 139, 1863-1870.
[80]
Huang, S.; Cen, X.; Peng, H. D.; Guo, S. Z.; Wang, W. Z.; Liu, T. X. Heterogeneous ultrathin films of poly(vinyl alcohol)/layered double hydroxide and montmorillonite nanosheets via layer-by-layer assembly. J. Phys. Chem. B 2009, 113, 15225-15230.
[81]
Podsiadlo, P.; Kaushik, A. K.; Arruda, E. M.; Waas, A. M.; Shim, B. S.; Xu, J. D.; Nandivada, H.; Pumplin, B. G.; Lahann, J.; Ramamoorthy, A. et al. Ultrastrong and stiff layered polymer nanocomposites. Science 2007, 318, 80-83.
[82]
Liu, M. J.; Ishida, Y.; Ebina, Y.; Sasaki, T.; Hikima, T.; Takata, M.; Aida, T. An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets. Nature 2015, 517, 68-72.
[83]
Lin, T. H.; Huang, W. H.; Jun, I. K.; Jiang, P. Bioinspired assembly of colloidal nanoplatelets by electric field. Chem. Mater. 2009, 21, 2039-2044.
[84]
Mao, C.; Huang, J. R.; Zhu, Y. T.; Jiang, W.; Tang, Q. X.; Ma, X. J. Tailored parallel graphene stripes in plastic film with conductive anisotropy by shear-induced self-assembly. J. Phys. Chem. Lett. 2013, 4, 43-47.
[85]
Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 2016, 10, 216-226.
[86]
Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.
[87]
Lee, C. H.; Lee, G. H.; Van Der Zande, A. M.; Chen, W. C.; Li, Y. L.; Han, M. Y.; Cui, X.; Arefe, G.; Nuckolls, C.; Heinz, T. F. et al. Atomically thin p-n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 2014, 9, 676-681.
[88]
Hu, L. F.; Wu, L. M.; Liao, M. Y.; Fang, X. S.. High-performance NiCo2O4 nanofilm photodetectors fabricated by an interfacial self-assembly strategy. Adv. Mater. 2011, 23, 1988-1992.
[89]
Yu, Y. F.; Huang, S. Y.; Li, Y. P.; Steinmann, S. N.; Yang, W. T.; Cao, L. Y. Layer-dependent electrocatalysis of MoS2 for hydrogen evolution. Nano Lett. 2014, 14, 553-558.
[90]
Lu, Q. P.; Yu, Y. F.; Ma, Q. L.; Chen, B.; Zhang, H. 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv. Mater. 2016, 28, 1917-1933.
[91]
Pomerantseva, E.; Gogotsi, Y. Two-dimensional heterostructures for energy storage. Nat. Energy 2017, 2, 17089.
[92]
Xiong, P.; Peng, L. L.; Chen, D. H.; Zhao, Y.; Wang, X.; Yu, G. H. Two-dimensional nanosheets based Li-ion full batteries with high rate capability and flexibility. Nano Energy 2015, 12, 816-823.
[93]
Peng, L. L.; Zhu, Y.; Khakoo, U.; Chen, D. H.; Yu, G. H. Self-assembled LiNi1/3Co1/3Mn1/3O2 nanosheet cathodes with tunable rate capability. Nano Energy 2015, 17, 36-42.
[94]
Li, H. S.; Peng, L. L.; Zhu, Y.; Chen, D. H.; Zhang, X. G.; Yu, G. H. An advanced high-energy sodium ion full battery based on nanostructured Na2Ti3O7/VOPO4 layered materials. Energy Environ. Sci. 2016, 9, 3399-3405.
[95]
Peng, L. L.; Zhu, Y.; Peng, X.; Fang, Z. W.; Chu, W. S.; Wang, Y.; Xie, Y. J.; Li, Y. F.; Cha, J. J.; Yu, G. H. Effective interlayer engineering of two-dimensional VOPO4 nanosheets via controlled organic intercalation for improving alkali ion storage. Nano Lett. 2017, 17, 6273-6279.
[96]
Peng, L. L.; Zhang, X.; Fang, Z. W.; Zhu, Y.; Xie, Y. J.; Cha, J. J.; Yu, G. H. General facet-controlled synthesis of single-crystalline {010}-oriented LiMPO4 (M = Mn, Fe, Co) nanosheets. Chem. Mater. 2017, 29, 10526-10533.
[97]
Zhao, Y.; Peng, L. L.; Liu, B. R.; Yu, G. H. Single-crystalline LiFePO4 nanosheets for high-rate Li-ion batteries. Nano Lett. 2014, 14, 2849-2853.
[98]
Peng, X.; Peng, L. L.; Wu, C. Z.; Xie, Y. Two dimensional nanomaterials for flexible supercapacitors. Chem. Soc. Rev. 2014, 43, 3303-3323.
[99]
Ji, H. X.; Zhao, X.; Qiao, Z. H.; Jung, J.; Zhu, Y. W.; Lu, Y. L.; Zhang, L. L.; MacDonald, A. H.; Ruoff, R. S. Capacitance of carbon-based electrical double-layer capacitors. Nat. Commun. 2014, 5, 3317.
[100]
Tongay, S.; Fan, W.; Kang, J.; Park, J.; Koldemir, U.; Suh, J.; Narang, D. S.; Liu, K.; Ji, J.; Li, J. B. et al. Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. Nano Lett. 2014, 14, 3185-3190.
[101]
Yang, S. X.; Tongay, S.; Li, Y.; Yue, Q.; Xia, J. B.; Li, S. S.; Li, J. B.; Wei, S. H. Layer-dependent electrical and optoelectronic responses of ReSe2 nanosheet transistors. Nanoscale 2014, 6, 7226-7231.
Nano Research
Pages 1179-1190
Cite this article:
Fang Z, Xing Q, Fernandez D, et al. A mini review on two-dimensional nanomaterial assembly. Nano Research, 2020, 13(5): 1179-1190. https://doi.org/10.1007/s12274-019-2559-5
Topics:

702

Views

43

Crossref

N/A

Web of Science

42

Scopus

5

CSCD

Altmetrics

Received: 06 October 2019
Revised: 19 October 2019
Accepted: 31 October 2019
Published: 16 November 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return