AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Mechanical force-induced assembly of one-dimensional nanomaterials

Shiting Wu1,2Yuanyuan Shang3Anyuan Cao2,3( )
College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
Show Author Information

Graphical Abstract

Abstract

There have been intensive and continuous research efforts in large-scale controlled assembly of one-dimensional (1D) nanomaterials, since this is the most effective and promising route toward advanced functional systems including integrated nano-circuits and flexible electronic devices. To date, numerous assembly approaches have been reported, showing considerable progresses in developing a variety of 1D nanomaterial assemblies and integrated systems with outstanding performance. However, obstacles and challenges remain ahead. Here, in this review, we summarize most widely studied assembly approaches such as Langmuir-Blodgett technique, substrate release/stretching, substrate rubbing and blown bubble films, depending on three types of external forces: compressive, tensile and shear forces. We highlight the important roles of these mechanical forces in aligning 1D nanomaterials such as semiconducting nanowires and carbon nanotubes, and discuss each approach on their effectiveness in achieving high-degree alignment, distinct characteristics and major limitations. Finally, we point out possible research directions in this field including rational control on the orientation, density and registration, toward scale-up and cost-effective manufacturing, as well as novel assembled systems based on 1D heterojunctions and hybrid structures.

References

[1]
Kim, T.; Kang, S.; Heo, J.; Cho, S.; Kim, J. W.; Choe, A.; Walker, B.; Shanker, R.; Ko, H.; Kim, J. Y. Nanoparticle-enhanced silver-nanowire plasmonic electrodes for high-performance organic optoelectronic devices. Adv. Mater. 2018, 30, 1800659.
[2]
Huang, L.; Gao, Q. G.; Sun, L. D.; Dong, H.; Shi, S.; Cai, T.; Liao, Q.; Yan, C. H. Composition-graded cesium lead halide perovskite nanowires with tunable dual-color lasing performance. Adv. Mater. 2018, 30, 1800596.
[3]
Fang, Y. S.; Ding, K.; Wu, Z. C.; Chen, H. T.; Li, W. B.; Zhao, S.; Zhang, Y. L.; Wang, L.; Zhou, J.; Hu, B. Architectural engineering of nanowire network fine pattern for 30 μm wide flexible quantum dot light-emitting diode application. ACS Nano 2016, 10, 10023-10030.
[4]
Duan, X. F.; Huang, Y.; Cui, Y.; Wang, J. F.; Lieber, C. M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 2001, 409, 66-69.
[5]
LeMieux, M. C.; Roberts, M.; Barman, S.; Jin, Y. W.; Kim, J. M.; Bao, Z. N. Self-sorted, aligned nanotube networks for thin-film transistors. Science 2008, 321, 101-104.
[6]
Su, Y. D.; Liu, C.; Brittman, S.; Tang, J. Y.; Fu, A.; Kornienko, N.; Kong, Q.; Yang, P. D. Single-nanowire photoelectrochemistry. Nat. Nanotechnol. 2016, 11, 609-612.
[7]
Ding, L.; Zhang, Z. Y.; Liang, S. B.; Pei, T.; Wang, S.; Li, Y.; Zhou, W. W.; Liu, J.; Peng, L. M. CMOS-based carbon nanotube pass-transistor logic integrated circuits. Nat. Commun. 2012, 3, 677.
[8]
Tian, B. Z.; Zheng, X. L.; Kempa, T. J.; Fang, Y.; Yu, N. F.; Yu, G. H.; Huang, J. L.; Lieber, C. M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007, 449, 885-889.
[9]
Tang, J. Y.; Huo, Z. Y.; Brittman, S.; Gao, H. W.; Yang, P. D. Solution-processed core-shell nanowires for efficient photovoltaic cells. Nat. Nanotechnol. 2011, 6, 568-572.
[10]
Kempa, T. J.; Tian, B. Z.; Kim, D. R.; Hu, J. S.; Zheng, X. L.; Lieber, C. M. Single and tandem axial p-i-n nanowire photovoltaic devices. Nano Lett. 2008, 8, 3456-3460.
[11]
Xiao, F. X.; Miao, J. W.; Tao, H. B.; Hung, S. F.; Wang, H. Y.; Yang, H. B.; Chen, J. Z.; Chen, R.; Liu, B. One-dimensional hybrid nanostructures for heterogeneous photocatalysis and photoelectrocatalysis. Small 2015, 11, 2115-2131.
[12]
Zhang, R. F.; Zhang, Y. Y.; Zhang, Q.; Xie, H. H.; Qian, W. Z.; Wei, F. Growth of half-meter long carbon nanotubes based on Schulz-Flory distribution. ACS Nano 2013, 7, 6156-6161.
[13]
Bai, Y. X.; Zhang, R. F.; Ye, X.; Zhu, Z. X.; Xie, H. H.; Shen, B. Y.; Cai, D. L.; Liu, B. F.; Zhang, C. X.; Jia, Z. et al. Carbon nanotube bundles with tensile strength over 80 Gpa. Nat. Nanotechnol. 2018, 13, 589-595.
[14]
Zhang, R. F.; Zhang, Y. Y.; Wei, F. Controlled synthesis of ultralong carbon nanotubes with perfect structures and extraordinary properties. Acc. Chem. Res. 2017, 50, 179-189.
[15]
Zhang, R. F.; Wen, Q.; Qian, W. Z.; Su, D. S.; Zhang, Q.; Wei, F. Superstrong ultralong carbon nanotubes for mechanical energy storage. Adv. Mater. 2011, 23, 3387-3391.
[16]
Lieber, C. M. Semiconductor nanowires: A platform for nanoscience and nanotechnology. MRS Bull. 2011, 36, 1052-1063.
[17]
Gudiksen, M. S.; Lauhon, L. J.; Wang, J. F.; Smith, D. C; Lieber, C. M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 2002, 415, 617-620.
[18]
He, L.; Sun, X. F.; Zhang, H.; Shao, F. W. G-quadruplex nanowires to direct the efficiency and selectivity of electrocatalytic CO2 reduction. Angew. Chem., Int. Ed .2018, 57, 12453-12457.
[19]
Kumar, B.; Atla, V.; Brian, J. P.; Kumari, S.; Nguyen, T. Q.; Sunkara, M.; Spurgeon, J. M. Reduced SnO2 porous nanowires with a high density of grain boundaries as catalysts for efficient electrochemical CO2-into-HCOOH conversion. Angew. Chem., Int. Ed .2017, 56, 3645-3649.
[20]
Ma, M.; Djanashvili, K.; Smith, W. A. Controllable hydrocarbon formation from the electrochemical reduction of CO2 over Cu nanowire arrays. Angew. Chem., Int. Ed .2016, 55, 6680-6684.
[21]
Xu, K.; Cheng, H.; Lv, H. F.; Wang, J. Y.; Liu, L. Q.; Liu, S.; Wu, X. J.; Chu, W. S.; Wu, C. Z.; Xie, Y. Controllable surface reorganization engineering on cobalt phosphide nanowire arrays for efficient alkaline hydrogen evolution reaction. Adv. Mater. 2018, 30, 1703322.
[22]
Zhu, Y. P.; Ma, T. Y.; Jaroniec, M.; Qiao, S. Z. Self-templating synthesis of hollow Co3O4 microtube arrays for highly efficient water electrolysis. Angew. Chem., Int. Ed .2017, 56, 1324-1328.
[23]
Gu, T. H.; Agyeman, D. A.; Shin, S. J.; Jin, X. Y.; Lee, J. M.; Kim, H.; Kang, Y. M.; Hwang, S. J. α-MnO2 nanowire-anchored highly oxidized cluster as a catalyst for Li-O2 batteries: Superior electrocatalytic activity and high functionality. Angew. Chem., Int. Ed .2018, 57, 15984-15989.
[24]
Xiao, W.; Zhou, J.; Yu, L.; Wang, D. H.; Lou, X. W. Electrolytic formation of crystalline silicon/germanium alloy nanotubes and hollow particles with enhanced lithium-storage properties. Angew. Chem., Int. Ed .2016, 55, 7427-7431.
[25]
Wang, L. B.; Yang, H. L.; Liu, X. X.; Zeng, R.; Li, M.; Huang, Y. H.; Hu, X. L. Constructing hierarchical tectorum-like-Fe2O3/PPy nanoarrays on carbon cloth for solid-state asymmetric supercapacitors. Angew. Chem., Int. Ed .2017, 56, 1105-1110.
[26]
Zou, M. C.; Ma, Z. M.; Wang, Q. F.; Yang, Y. B.; Wu, S. T.; Yang, L. S.; Hu, S.; Xu, W. J.; Han, P. C.; Zou R. Q. et al. Coaxial TiO2-carbon nanotube sponges as compressible anodes for lithium-ion batteries. J. Mater. Chem. A 2016, 4, 7398-7405.
[27]
Shi, E. Z.; Li, H. B.; Xu, W. J.; Wu, S. T.; Wei, J. Q.; Fang, Y.; Cao, A. Y. Improvement of graphene-Si solar cells by embroidering graphene with a carbon nanotube spider-web. Nano Energy 2015, 17, 216-223.
[28]
Shahid, M.; Cheng, J.; Li, T. J.; Khan, M. A.; Wang, Y. T.; Hu, Y.; Zhang, M. F.; Yang, J.; Aziz, H. S.; Wan, C. L. et al. High photodetectivity of low-voltage flexible photodetectors assembled with hybrid aligned nanowire arrays. J. Mater. Chem. C 2018, 6, 6510-6519.
[29]
Zhang, K.; Li, J.; Fang, Y. S.; Luo, B. B.; Zhang, Y. L.; Li, Y. Q.; Zhou, J.; Hu, B. Unraveling the solvent induced welding of silver nanowires for high performance flexible transparent electrodes. Nanoscale 2018, 10, 12981-12990.
[30]
Yang, Z.; Wang, M. Q.; Zhao, Q.; Qiu, H. W.; Li, J. J.; Li, X. M.; Shao, J. Y. Dielectrophoretic assembled single and parallel aligned Ag nanowire/ZnO branched nanorods heteronanowires UV photodetectors. ACS Appl. Mater. Interfaces 2017, 9, 22837-22845.
[31]
Takei, K.; Takahashi, T.; Ho, J. C.; Ko, H.; Gillies, A. G.; Leu, P. W.; Fearing, R. S.; Javey, A. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat. Mater. 2010, 9, 821-826.
[32]
Liu, X.; Long, Y. Z.; Liao, L.; Duan, X. F.; Fan, Z. Y. Large-scale integration of semiconductor nanowires for high-performance flexible electronics. ACS Nano 2012, 6, 1888-1900.
[33]
Gao, W.; Ota, H. Kiriya, D.; Takei, K. Javey, A. Flexible electronics toward wearable sensing. Acc. Chem. Res. 2019, 52, 523-533.
[34]
Jia, C. C.; Lin, Z. Y.; Huang, Y.; Duan, X. F. Nanowire electronics: From nanoscale to macroscale. Chem. Rev. 2019, 119, 9074-9135.
[35]
Hu, H. B.; Wang, S. C.; Wang, S. C.; Liu, G. W.; Cao, T.; Long, Y. Aligned silver nanowires enabled highly stretchable and transparent electrodes with unusual conductive property. Adv. Funct. Mater. 2019, 29, 1902922.
[36]
Patolsky, F.; Timko, B. P.; Yu, G. H.; Fang, Y.; Greytak, A. B.; Zheng, G. F.; Lieber, C. M. Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 2006, 313, 1100-1104.
[37]
Yu, G. H.; Lieber, C. M. Assembly and integration of semiconductor nanowires for functional nanosystems. Pure Appl. Chem. 2010, 82, 2295-2314.
[38]
Timko, B. P.; Cohen-Karni, T.; Yu, G. H.; Qing, Q.; Tian, B. Z.; Lieber, C. M. Electrical recording from hearts with flexible nanowire device arrays. Nano Lett. 2009, 9, 914-918.
[39]
Kwiat, M.; Cohen, S.; Pevzner, A.; Patolsky, F. Large-scale ordered 1D-nanomaterials arrays: Assembly or not? Nano Today 2013, 8, 677-694.
[40]
Miao, X.; Chabak, K.; Zhang, C.; Mohseni, P. K.; Walker, D.Jr.; Li, X. L. High-speed planar GaAs nanowire arrays with fmax > 75 GHz by wafer-scale bottom-up growth. Nano Lett. 2015, 15, 2780-2786.
[41]
Tsivion, D.; Joselevich, E. Guided growth of horizontal gan nanowires on spinel with orientation-controlled morphologies. J. Phys. Chem. C 2014, 118, 19158-19164.
[42]
Wang, Q. S.; Li, J.; Lei, Y.; Wen, Y.; Wang, Z. X.; Zhan, X. Y.; Wang, F.; Wang. F. M.; Huang, Y.; Xu, K. et al. Oriented growth of Pb1-xSnxTe nanowire arrays for integration of flexible infrared detectors. Adv. Mater. 2016, 28, 3596-3601.
[43]
Oksenberg, E.; Popovitz-Biro, R.; Rechav, K.; Joselevich, E. Guided growth of horizontal ZnSe nanowires and their integration into high-performance blue-UV photodetectors. Adv. Mater. 2015, 27, 3999-4005.
[44]
Feng, J. G.; Wu, Y. C.; Su, B.; Jiang, L. Large-scale assembly of organic highly crystalline multicomponent wires through surface-engineered condensation and crystallization. Small 2015, 11, 5759-5765.
[45]
Oksenberg, E.; Martí-Sánchez, S.; Popovitz-Biro, R.; Arbiol, J.; Joselevich, E. Surface-guided core-shell ZnSe@ZnTe nanowires as radial p-n heterojunctions with photovoltaic behavior. ACS Nano 2017, 11, 6155-6166.
[46]
Hu, Y.; Kang, L. X.; Zhao, Q. C.; Zhong, H.; Zhang, S. C.; Yang, L. W.; Wang, Z. Q.; Lin, J. J.; Li, Q. W.; Zhang, Z. Y. et al. Growth of high-density horizontally aligned SWNT arrays using Trojan catalysts. Nat. Commun. 2015, 6, 6099.
[47]
Jin, Z.; Chu, H. B.; Wang, J. Y.; Hong, J. X.; Tan, W. C.; Li, Y. Ultralow feeding gas flow guiding growth of large-scale horizontally aligned single-walled carbon nanotube arrays. Nano Lett. 2007, 7, 2073-2079.
[48]
Freer, E. M.; Grachev, O.; Duan, X. F.; Martin, S.; Stumbo, D. P. High-yield self-limiting single-nanowire assembly with dielectrophoresis. Nat. Nanotechnol. 2010, 5, 525-530.
[49]
Long, D. P.; Lazorcik, L. J.; Shashidhar, R. Magnetically directed self-assembly of carbon nanotube devices. Adv. Mater. 2004, 16, 814-819.
[50]
Yang, P. D. Wires on water. Nature 2003, 425, 243-244.
[51]
Tao, A.; Kim, F.; Hess, C.; Goldberger, J.; He, R. R.; Sun, Y. G.; Xia, Y. N.; Yang, P. D. Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett. 2003, 3, 1229-1233.
[52]
Whang, D.; Jin, S.; Wu, Y.; Lieber, C. M. Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett. 2003, 3, 1255-1259.
[53]
Liu, J. W.; Zhu, J. H.; Zhang, C. L.; Liang, H. W.; Yu, S. H. Mesostructured assemblies of ultrathin superlong tellurium nanowires and their photoconductivity. J. Am. Chem. Soc. 2010, 132, 8945-8952.
[54]
Li, X. L.; Zhang, L.; Wang, X. R.; Shimoyama, I.; Sun, X. M.; Seo, W. S.; Dai, H. J. Langmuir-Blodgett assembly of densely aligned single-walled carbon nanotubes from bulk materials. J. Am. Chem. Soc. 2007, 129, 4890-4891.
[55]
He, Z.; Jiang, H. J.; Wu, L. L.; Liu, J. W.; Wang, G.; Wang, X.; Wang, J. L.; Hou, Z. H.; Chen, G.; Yu, S. H. Real-time probing of nanowire assembly kinetics at the air-water interface by in situ synchrotron X-ray scattering. Angew. Chem., Int. Ed .2018, 57, 8130-8134.
[56]
Bian, R. X.; Meng, L. L.; Zhang, M.; Chen, L. L.; Liu, H. Aligning one-dimensional nanomaterials by solution processes. ACS Omega 2019, 4, 1816-1823.
[57]
Liu, J. W.; Wang, J. L.; Wang, Z. H.; Huang, W. R.; Yu, S. H. Manipulating nanowire assembly for flexible transparent electrodes. Angew. Chem., Int. Ed .2014, 53, 13477-13482.
[58]
Lv, J. W.; Hou, K.; Ding, D. F.; Wang, D. W.; Han, B.; Gao, X. Q.; Zhao, M.; Shi, L.; Guo, J.; Zheng, Y. L. et al. Gold nanowire chiral ultrathin films with ultrastrong and broadband optical activity. Angew. Chem., Int. Ed .2017, 56, 5055-5060.
[59]
Wang, J. L.; Lu, Y. R.; Li, H. H.; Liu, J. W.; Yu, S. H. Large area co-assembly of nanowires for flexible transparent smart windows. J. Am. Chem. Soc. 2017, 139, 9921-9926.
[60]
Liu, Q.; Hao, Z. M.; Liao, X. B.; Pan, X. L.; Li, S. X.; Xu, L.; Mai, L. Q. Langmuir-Blodgett nanowire devices for in situ probing of zinc-ion batteries. Small 2019, 15, 1902141.
[61]
Guo, Q. J.; Teng, X. W.; Rahman, S.; Yang, H. Patterned Langmuir-Blodgett films of monodisperse nanoparticles of iron oxide using soft lithography. J. Am. Chem. Soc. 2003, 125, 630-631.
[62]
Cote, L. J.; Kim, F.; Huang, J. X. Langmuir-Blodgett assembly of graphite oxide single layers. J. Am. Chem. Soc. 2009, 131, 1043-1049.
[63]
Xu, F.; Durham III, J. W.; Wiley, B. J.; Zhu, Y. Strain-release assembly of nanowires on stretchable substrates. ACS Nano 2011, 5, 1556-1563.
[64]
Smith, M. K.; Jensen, K. E.; Pivak, P. A.; Mirica, K. A. Direct self-assembly of conductive nanorods of metal-organic frameworks into chemiresistive devices on shrinkable polymer films. Chem. Mater. 2016, 28, 5264-5268.
[65]
Durham III, J. W.; Zhu, Y. Fabrication of functional nanowire devices on unconventional substrates using strain-release assembly. ACS Appl. Mater. Interfaces 2013, 5, 256-261.
[66]
Bang, J.; Choi, J.; Xia, F.; Kwon, S. S.; Ashraf, A.; Park, W. I.; Nam, S. W. Assembly and densification of nanowire arrays via shrinkage. Nano Lett. 2014, 14, 3304-3308.
[67]
Hsieh, G. W.; Wang, J. J.; Ogata, K.; Robertson, J.; Hofmann, S.; Milne, W. I. Stretched contact printing of one-dimensional nanostructures for hybrid inorganic-organic field effect transistors. J. Phys. Chem. C 2012, 116, 7118-7125.
[68]
Pletsch, H.; Tebbe, M.; Dulle, M.; Förster, B.; Fery, A.; Förster, S.; Greiner, A.; Agarwal, S. Reversible gold nanorod alignment in mechano-responsive elastomers. Polymer 2015, 66, 167-172.
[69]
Vinod, T. P.; Taylor, J. M.; Konda, A.; Morin, S. A. Stretchable substrates for the assembly of polymeric microstructures. Small 2017, 13, 1603350.
[70]
Dong, J. J.; Abukhdeir, N. M.; Goldthorpe, I. A. Simple assembly of long nanowires through substrate stretching. Nanotechnology 2015, 26, 485302.
[71]
Ji, C. Y.; Li, H. B.; Zhang, L. H.; Liu, Y.; Li, Y.; Jia, Y.; Li, Z.; Li, P. X.; Shi, E. Z.; Wei, J. Q. et al. Suspended, straightened carbon nanotube arrays by gel chapping. ACS Nano 2011, 5, 5656-5661.
[72]
Bian, R. X. Meng, L. L.; Guo, C.; Tang, Z. X.; Liu, H. A facile one-step approach for constructing multidimensional ordered nanowire micropatterns via fibrous elastocapillary coalescence. Adv. Mater. 2019, 31, 1900534.
[73]
Javey, A.; Nam; Friedman, R. S.; Yan, H.; Lieber, C. M. Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. Nano Lett. 2007, 7, 773-777.
[74]
Fan, Z. Y.; Ho, J. C.; Jacobson, Z. A.; Yerushalmi, R.; Alley, R. L.; Razavi, H.; Javey, A. Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. Nano Lett. 2008, 8, 20-25.
[75]
Takahashi, T.; Takei, K.; Ho, J. C.; Chueh, Y. L.; Fan, Z. Y.; Javey, A. Monolayer resist for patterned contact printing of aligned nanowire arrays. J. Am. Chem. Soc. 2009, 131, 2102-2103.
[76]
Wang, X. F.; Xie, Z.; Huang, H. T.; Liu, Z.; Chen, D.; Shen, G. Z. Gas sensors, thermistor and photodetector based on ZnS nanowires. J. Mater. Chem. 2012, 22, 6845-6850.
[77]
Yerushalmi, R.; Jacobson, Z. A.; Ho, J. C.; Fan, Z. Y.; Javey, A. Large scale, highly ordered assembly of nanowire parallel arrays by differential roll printing. Appl. Phys. Lett. 2007, 91, 203104.
[78]
Chang, Y. K.; Hong, F. C. N. The fabrication of ZnO nanowire field-effect transistors by roll-transfer printing. Nanotechnology 2009, 20, 195302.
[79]
Yao, J.; Yan, H.; Lieber, C. M. A nanoscale combing technique for the large-scale assembly of highly aligned nanowires. Nat. Nanotechnol. 2013, 8, 329-335.
[80]
Weiss, N. O.; Duan, X. F. Untangling nanowire assembly. Nat. Nanotechnol. 2013, 8, 312-313.
[81]
Huang, Y.; Duan, X. F.; Wei, Q. Q.; Lieber, C. M. Directed assembly of one-dimensional nanostructures into functional networks. Science 2001, 291, 630-633.
[82]
Huang, Y.; Duan, X. F.; Cui, Y.; Lauhon, L. J.; Kim, K. H.; Lieber, C. M. Logic gates and computation from assembled nanowire building blocks. Science 2001, 294, 1313-1317.
[83]
McAlpine, M. C.; Friedman, R. S.; Jin, S.; Lin, K. H.; Wang, W. U.; Lieber, C. M. High-performance nanowire electronics and photonics on glass and plastic substrates. Nano Lett. 2003, 3, 1531-1535.
[84]
Duan, X. F.; Niu, C. M.; Sahi, V.; Chen, J.; Parce, J. W.; Empedocles, S.; Goldman, J. L. High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 2003, 425, 274-278.
[85]
Huang, Y.; Duan, X. F.; Lieber, C. M. Nanowires for integrated multicolor nanophotonics. Small 2005, 1, 142-147.
[86]
Assad, O.; Leshansky, A. M.; Wang, B.; Stelzner, T.; Christiansen, S.; Haick, H. Spray-coating route for highly aligned and large-scale arrays of nanowires. ACS Nano 2012, 6, 4702-4712.
[87]
Lee, H.; Seong, B.; Kim, J.; Jang, Y.; Byun, D. Direct alignment and patterning of silver nanowires by electrohydrodynamic jet printing. Small 2014, 10, 3918-3922.
[88]
Blell, R.; Lin, X. F.; Lindström, T.; Ankerfors, M.; Pauly, M.; Felix, O.; Decher, G. Generating in-plane orientational order in multilayer films prepared by spray-assisted layer-by-layer assembly. ACS Nano 2017, 11, 84-94.
[89]
Huang, J. X.; Fan, R.; Connor, S.; Yang, P. D. One-step patterning of aligned nanowire arrays by programmed dip coating. Angew. Chem., Int. Ed .2007, 46, 2414-2417.
[90]
Zhou, W. P.; Hu, A. M.; Bai, S.; Ma, Y.; Bridge, D. Anisotropic optical properties of large-scale aligned silver nanowire films via controlled coffee ring effects. RSC Adv. 2015, 29, 39103-39109.
[91]
Dai, H.; Ding, R. Q.; Li, M. C.; Huang, J.; Li, Y. F.; Trevor, M. Ordering Ag nanowire arrays by spontaneous spreading of volatile droplet on solid surface. Sci. Rep. 2014, 4, 6742.
[92]
Wu, F.; Li, Z. D.; Ye, F.; Zhao, X. L.; Zhang, T. Yang, X. N. Aligned silver nanowires as transparent conductive electrodes for flexible optoelectronic devices. J. Mater. Chem. C 2016, 4, 11074-11080.
[93]
Li, B.; Zhang, C. C.; Jiang, B. B.; Han, W.; Lin, Z. Q. Flow-enabled self-assembly of large-scale aligned nanowires. Angew. Chem., Int. Ed .2015, 54, 4250-4254.
[94]
Park, S.; Pitner, G.; Giri, G.; Koo, J. H.; Park, J.; Kim, K.; Wang, H. L.; Sinclair, R.; Wong, H. S. P.; Bao, Z. N. Large-area assembly of densely aligned single-walled carbon nanotubes using solution shearing and their application to field-effect transistors. Adv. Mater. 2015, 27, 2656-2662.
[95]
Collet, M.; Salomon, S.; Klein, N. Y.; Seichepine, F.; Vieu, C.; Nicu, L.; Larrieu, G. Large-scale assembly of single nanowires through capillary-assisted dielectrophoresis. Adv. Mater. 2015, 27, 1268-1273.
[96]
Chen, Y. R.; Hong, C. C.; Liou, T. M.; Hwang, K. C.; Guo, T. F. Roller-induced bundling of long silver nanowire networks for strong interfacial adhesion, highly flexible, transparent conductive electrodes. Sci. Rep. 2017, 7, 16662.
[97]
Ni, S. B.; Leemann, J.; Wolf, H.; Isa, L. Insights into mechanisms of capillary assembly. Faraday Discuss. 2015, 181, 225-242.
[98]
Flauraud, V.; Mastrangeli, M.; Bernasconi, G. D.; Butet, J.; Alexander, D. T. L.; Shahrabi, E.; Martin, O. J. F.; Brugger, J. Nanoscale topographical control of capillary assembly of nanoparticles. Nat. Nanotechnol. 2017, 12, 73-80.
[99]
Ni, S. B.; Leemann, J.; Buttinoni, I.; Isa, L.; Wolf, H. Programmable colloidal molecules from sequential capillarity-assisted particle assembly. Sci. Adv. 2016, 2, e1501779.
[100]
Kang, S.; Kim, T.; Cho, S.; Lee, Y.; Choe, A.; Walker, B.; Ko, S. J.; Kim, J. Y.; Ko, H. Capillary printing of highly aligned silver nanowire transparent electrodes for high-performance optoelectronic devices. Nano Lett. 2015, 15, 7933-7942.
[101]
Meng, L. L.; Bian, R. X.; Guo, C.; Xu, B. J.; Liu, H.; Jiang, L. Aligning Ag nanowires by a facile bioinspired directional liquid transfer: Toward anisotropic flexible conductive electrodes. Adv. Mater. 2018, 30, 1706938.
[102]
Cho, S.; Kang, S.; Pandya, A.; Shanker, R.; Khan, Z.; Lee, Y.; Park, J.; Craig, S. L.; Ko, H. Large-area cross-aligned silver nanowire electrodes for flexible, transparent, and force-sensitive mechanochromic touch screens. ACS Nano 2017, 11, 4346-4357.
[103]
Wang, J. J.; Fang, Z. Q.; Zhu, H. L.; Gao, B. Y.; Garner, S.; Cimo, P.; Barcikowski, Z.; Mignerey, A.; Hu, L. B. Flexible, transparent, and conductive defrosting glass. Thin Solid Films 2014, 556, 13-17.
[104]
Cai, J.; Li, X. H.; Ma, L.; Jiang, Y. G.; Zhang, D. Y. Facile large-scale alignment and assembly of conductive micro/nano particles by combining both flow shear and electrostatic interaction. Compos. Sci. Technol. 2019, 171, 199-205.
[105]
Yu, G. H.; Cao A. Y.; Lieber, C. M. Large-area blown bubble films of aligned nanowires and carbon nanotubes. Nat. Nanotechnol. 2007, 2, 372-377.
[106]
Yu, G. H.; Li, X. L.; Lieber C. M.; Cao, A. Y. Nanomaterial-incorporated blown bubble films for large-area, aligned nanostructures. J. Mater. Chem. 2008, 18, 728-734.
[107]
Wu, S. T.; Huang, K.; Shi, E. Z.; Xu, W. J.; Fang, Y.; Yang Y. B.; Cao, A. Y. Soluble polymer-based, blown bubble assembly of single- and double-layer nanowires with shape control. ACS Nano 2014, 8, 3522-3530.
[108]
Wu, S. T.; Chen, D. Q.; Yuan, Y. J.; Cao, A. Y. Blown bubble assembly of ultralong 1D bismuth sulfide nanostructures with ordered alignment and shape control. Nanotechnology 2018, 29, 395601.
[109]
Wu, S. T.; Yang, L.; Zou, M. C.; Yang, Y. B.; Du, M. D.; Xu, W. J.; Yang, L. S.; Fang Y.; Cao, A. Y. Blown-bubble assembly and in situ fabrication of sausage-like graphene nanotubes containing copper nanoblocks. Nano Lett. 2016, 16, 4917-4924.
[110]
Wu, S. T.; Yang, L. S.; Wu, H. S.; Yuan, Y. J.; Ji, Z. G.; Cao, A. Y. Performance improvement of assembled multi-walled carbon nanotube network/Si solar cells decorated with metal nanoparticles. Chem. Select 2018, 3, 9736-9742.
[111]
Wu, S. T.; Shi, E. Z.; Yang Y. B.; Xu, W. J.; Li, X. Y.; Cao, A. Y. Direct fabrication of carbon nanotube-graphene hybrid films by a blown bubble method. Nano Res. 2015, 8, 1746-1754.
[112]
Wu, S. T.; Yang, Y. B.; Li, Y. T.; Wang, C. H.; Xu, W. J.; Shi, E. Z.; Zou, M. C.; Yang, L. S.; Yang, X. D.; Li, Y. et al. Blown bubble assembly of graphene oxide patches for transparent electrodes in carbon-silicon solar cells. ACS Appl. Mater. Interfaces 2015, 7, 28330-28336.
Nano Research
Pages 1191-1204
Cite this article:
Wu S, Shang Y, Cao A. Mechanical force-induced assembly of one-dimensional nanomaterials. Nano Research, 2020, 13(5): 1191-1204. https://doi.org/10.1007/s12274-019-2560-z
Topics:

730

Views

17

Crossref

N/A

Web of Science

16

Scopus

1

CSCD

Altmetrics

Received: 16 September 2019
Revised: 18 October 2019
Accepted: 03 November 2019
Published: 26 November 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return