AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Amorphous MoS2 confined in nitrogen-doped porous carbon for improved electrocatalytic stability toward hydrogen evolution reaction

Shaojie Lu1Wenjing Wang1Shengshuang Yang1Wei Chen1( )Zhongbin Zhuang3Wenjing Tang1Caihong He1Jiajing Qian1Dekun Ma1Yun Yang1Shaoming Huang1,2( )
Key Laboratory of Carbon Materials of Zhejiang ProvinceCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhou325035China
School of Materials and EnergyGuangdong University of TechnologyGuangzhou510006China
State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
Show Author Information

Graphical Abstract

Abstract

Developing non-precious metal catalysts with high activity and stability for electrochemical hydrogen evolution reaction (HER) is of great significance in both science and technology. In this work, N-doped CMK-3, which was prepared with a casting method using SBA-15 as the hard template and ammonia as the nitrogen source, has been utilized to hold MoS2 and restrict its growth to form MoS2@N-CMK-3 composite. As a result, MoS2 was found to have poorly crystallized and the limited space of porous N-CMK-3 made its size much small. Then there are more active sites in MoS2. Accordingly, MoS2@N-CMK-3 has exhibited good electrocatalytic performance toward HER in acids with a quite small Tafel slope of 32 mV·dec-1. And more importantly, compared to MoS2@CMK-3, its stability has been greatly improved, which can be attributed to the interaction between MoS2 and nitrogen atoms avoiding aggregation and mass loss. This work provides an idea that doping a porous carbon support with nitrogen is an effective way to enhance the stability of the catalyst.

Electronic Supplementary Material

Download File(s)
12274_2019_2563_MOESM1_ESM.pdf (5 MB)

References

1

Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

2

Chen, W. X.; Pei, J. J.; He, C. T.; Wan, J. W.; Ren, H. L.; Zhu, Y. Q.; Wang, Y.; Dong, J. C.; Tian, S.; Cheong, W. C. et al. Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction. Angew. Chem., Int. Ed. 2017, 56, 16086–16090.

3

Yang, J.; Zhang, F. J.; Wang, X.; He, D. S.; Wu, G.; Yang, Q. H.; Hong, X.; Wu, Y. E.; Li, Y. D. Porous molybdenum phosphide nano-octahedrons derived from confined phosphorization in UIO-66 for efficient hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 12854–12858.

4

Li, P.; Yang, Z.; Shen, J. X.; Nie, H. G.; Cai, Q. R.; Li, L. H.; Ge, M. Z.; Gu, C. C.; Chen, X. A.; Yang, K. Q. et al. Subnanometer molybdenum sulfide on carbon nanotubes as a highly active and stable electrocatalyst for hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2016, 8, 3543–3550.

5

Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R. K.; Yadav, R. M.; Verma, R. K.; Singh, D. P.; Tan, W. K.; Pérez del Pino, A.; Moshkalev, S. A. et al. A review on synthesis of graphene, h-BN and MoS2 for energy storage applications: Recent progress and perspectives. Nano Res. 2019, 12, 2655–2694.

6

Mahmood, J.; Li, F.; Jung, S. M.; Okyay, M. S.; Ahmad, I.; Kim, S. J.; Park, N.; Jeong, H. Y.; Baek, J. B. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 2017, 12, 441–446.

7

Sun, Q.; Wang, N.; Bing, Q.; Si, R.; Liu, J.; Bai, R.; Zhang, P.; Jia, M.; Yu, J. Subnanometric hybrid Pd-M(OH)2, M = Ni, Co, clusters in zeolites as highly efficient nanocatalysts for hydrogen generation. Chem 2017, 3, 477–493.

8

Huang, X.; Zeng, Z. Y.; Bao, S. Y.; Wang, M. F.; Qi, X. Y.; Fan, Z. X.; Zhang, H. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 2013, 4, 1444.

9

Wang, D. S.; Zhao, P.; Li, Y. D. General preparation for Pt-based alloy nanoporous nanoparticles as potential nanocatalysts. Sci. Rep. 2011, 1, 37.

10

Wei, S. J.; Li, A.; Liu, J. C.; Li, Z.; Chen, W. X.; Gong, Y.; Zhang, Q. H.; Cheong, W. C.; Wang, Y.; Zheng, L. R. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 2018, 13, 856–861.

11

McEnaney, J. M.; Crompton, J. C.; Callejas, J. F.; Popczun, E. J.; Biacchi, A. J.; Lewis, N. S.; Schaak, R. E. Amorphous molybdenum phosphide nanoparticles for electrocatalytic hydrogen evolution. Chem. Mater. 2014, 26, 4826–4831.

12

Xie, J. F.; Zhang, J. J.; Li, S.; Grote, F.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan, B. C.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881–17888.

13

Stephens, I. E. L.; Chorkendorff, I. Minimizing the use of platinum in hydrogen-evolving electrodes. Angew. Chem., Int. Ed. 2011, 50, 1476–1477.

14

Li, J. S.; Wang, Y.; Liu, C. H.; Li, S. L.; Wang, Y. G.; Dong, L. Z.; Dai, Z. H.; Li, Y. F.; Lan, Y. Q. Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution. Nat. Commun. 2016, 7, 11204.

15

Luo, Y. T.; Tang, L.; Khan, U.; Yu, Q. M.; Cheng, H. M.; Zou, X. L.; Liu, B. L. Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density. Nat. Commun. 2019, 10, 269.

16

Xiang, Z. C.; Zhang, Z.; Xu, X. J.; Zhang, Q.; Yuan, C. W. MoS2 nanosheets array on carbon cloth as a 3D electrode for highly efficient electrochemical hydrogen evolution. Carbon 2016, 98, 84–89.

17

Li, H.; Tsai, C.; Koh, A. L.; Cai, L. L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J. H.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 48–53.

18

Ho, T. A.; Bae, C.; Lee, S.; Kim, M.; Montero-Moreno, J. M.; Park, J. H.; Shin, H. Edge-on MoS2 thin films by atomic layer deposition for understanding the interplay between the active area and hydrogen evolution reaction. Chem. Mater. 2017, 29, 7604–7614.

19

Hong, M.; Shi, J. P.; Huan, Y. H.; Xie, Q.; Zhang, Y. F. Microscopic insights into the catalytic mechanisms of monolayer MoS2 and its heterostructures in hydrogen evolution reaction. Nano Res. 2019, 12, 2140–2149.

20

Ren, B. W.; Li, D. Q.; Jin, Q. Y.; Cui, H.; Wang, C. X. A self-supported porous WN nanowire array: An efficient 3D electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 2017, 5, 19072–19078.

21

Lv, Z.; Tahir, M.; Lang, X. W.; Yuan, G.; Pan, L.; Zhang, X. W.; Zou, J. J. Well-dispersed molybdenum nitrides on a nitrogen-doped carbon matrix for highly efficient hydrogen evolution in alkaline media. J. Mater. Chem. A 2017, 5, 20932–20937.

22

Gu, W. L.; Gan, L. F.; Zhang, X. Y.; Wang, E. K.; Wang, J. Theoretical designing and experimental fabricating unique quadruple multimetallic phosphides with remarkable hydrogen evolution performance. Nano Energy 2017, 34, 421–427.

23

Li, J. Y.; Yan, M.; Zhou, X. M.; Huang, Z. Q.; Xia, Z. M.; Chang, C. R.; Ma, Y. Y.; Qu, Y. Q. Mechanistic insights on ternary Ni2-xCoxP for hydrogen evolution and their hybrids with graphene as highly efficient and robust catalysts for overall water splitting. Adv. Funct. Mater. 2016, 26, 6785–6796.

24

Liu, Y. D.; Ren, L.; Zhang, Z.; Qi, X.; Li, H. X.; Zhong, J. X. 3D binder-free MoSe2 nanosheets/carbon cloth electrodes for efficient and stable hydrogen evolution prepared by simple electrophoresis deposition strategy. Sci. Rep. 2016, 6, 22516.

25

Yin, Y.; Zhang, Y. M.; Gao, T. L.; Yao, T.; Zhang, X. H.; Han, J. C.; Wang, X. J.; Zhang, Z. H.; Xu, P.; Zhang, P. et al. Synergistic phase and disorder engineering in 1T-MoSe2 nanosheets for enhanced hydrogen-evolution reaction. Adv. Mater. 2017, 29, 1700311.

26

Liu, Z. Q.; Zhang, X.; Gong, Y.; Lu, Q. P.; Zhang, Z. C.; Cheng, H. F.; Ma, Q. L.; Chen, J. Z.; Zhao, M. T.; Chen, B. et al. Synthesis of MoX2 (X = Se or S) monolayers with high-concentration 1T′ phase on 4H/fcc-Au nanorods for hydrogen evolution. Nano Res. 2019, 12, 1301–1305.

27

Kim, Y.; Jackson, D. H. K.; Lee, D.; Choi, M.; Kim, T. W.; Jeong, S. Y.; Chae, H. J.; Kim, H. W.; Park, N.; Chang, H. et al. In situ electrochemical activation of atomic layer deposition coated MoS2 basal planes for efficient hydrogen evolution reaction. Adv. Funct. Mater. 2017, 27, 1701825.

28

Deng, S.; Luo, M.; Ai, C.; Zhang, Y.; Liu, B.; Huang, L.; Jiang, Z.; Zhang, Q.; Gu, L.; Lin, S. et al. Synergistic doping and intercalation: Realizing deep phase modulation on MoS2 arrays for high-efficiency hydrogen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 16289–16296.

29

Gupta, U.; Rao, C. N. R. Hydrogen generation by water splitting using MoS2 and other transition metal dichalcogenides. Nano Energy 2017, 41, 49–65.

30

Wang, G.; Tao, J. Y.; Zhang, Y. J.; Wang, S. P.; Yan, X. J.; Liu, C. C.; Hu, F.; He, Z. Y.; Zuo, Z. J.; Yang, X. W. Engineering two-dimensional mass-transport channels of the MoS2 nanocatalyst toward improved hydrogen evolution performance. ACS Appl. Mater. Interfaces 2018, 10, 25409–25414.

31

Yang, T.; Bao, Y.; Xiao, W.; Zhou, J.; Ding, J.; Feng, Y. P.; Loh, K. P.; Yang, M.; Wang, S. J. Hydrogen evolution catalyzed by a molybdenum sulfide two-dimensional structure with active basal planes. ACS Appl. Mater. Interfaces 2018, 10, 22042–22049.

32

Li, B.; Jiang, L.; Li, X.; Cheng, Z. H.; Ran, P.; Zuo, P.; Qu, L. T.; Zhang, J. T.; Lu, Y. F. Controllable synthesis of nanosized amorphous MoSx using temporally shaped femtosecond laser for highly efficient electrochemical hydrogen production. Adv. Funct. Mater. 2019, 29, 1806229.

33

Hinnemann, B.; Moses, P. G.; Bonde, J.; Joergensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Noerskov, J. K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. ChemInform 2005, 36, 5308–5309.

34

Liu, Y. Y.; Wu, J. J.; Hackenberg, K. P.; Zhang, J.; Wang, Y. M.; Yang, Y. C.; Keyshar, K.; Gu, J.; Ogitsu, T.; Vajtai, R. et al. Self-optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution. Nat. Energy 2017, 2, 17127.

35

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

36

Liu, P. T.; Zhu, J. Y.; Zhang, J. Y.; Xi, P. X.; Tao, K.; Gao, D. Q.; Xue, D. S. P dopants triggered new basal plane active sites and enlarged interlayer spacing in MoS2 nanosheets toward electrocatalytic hydrogen evolution. ACS Energy Lett. 2017, 2, 745–752.

37

Benson, J.; Li, M. X.; Wang, S. B.; Wang, P.; Papakonstantinou, P. Electrocatalytic hydrogen evolution reaction on edges of a few layer molybdenum disulfide nanodots. ACS Appl. Mater. Interfaces 2015, 7, 14113–14122.

38

Chang, Y. H.; Lin, C. T.; Chen, T. Y.; Hsu, C. L.; Lee, Y. H.; Zhang, W. J.; Wei, K. H.; Li, L. J. Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams. Adv. Mater. 2013, 25, 756–760.

39

Zhao, X.; Zhu, H.; Yang, X. R. Amorphous carbon supported MoS2 nanosheets as effective catalysts for electrocatalytic hydrogen evolution. Nanoscale 2014, 6, 10680–10685.

40

Taguchi, A.; Schüth, F. Ordered mesoporous materials in catalysis. Microporous Mesoporous Mater. 2005, 77, 1–45.

41

Dubovoy, V.; Ganti, A.; Zhang, T.; Al-Tameemi, H.; Cerezo, J. D.; Boyd, J. M.; Asefa, T. One-pot hydrothermal synthesis of benzalkonium-templated mesostructured silica antibacterial agents. J. Am. Chem. Soc. 2018, 140, 13534–13537.

42

Yoo, H. M.; Lee, S. Y.; Park, S. J. Ordered nanoporous carbon for increasing CO2 capture. J. Solid State Chem. 2013, 197, 361–365.

43

Peng, L.; Hung, C. T.; Wang, S. W.; Zhang, X. M.; Zhu, X. H.; Zhao, Z. W.; Wang, C. Y.; Tang, Y.; Li, W.; Zhao, D. Y. Versatile nanoemulsion assembly approach to synthesize functional mesoporous carbon nanospheres with tunable pore sizes and architectures. J. Am. Chem. Soc. 2019, 141, 7073–7080.

44

Amiinu, I. S.; Pu, Z. H.; Liu, X. B.; Owusu, K. A.; Monestel, H. G. R.; Boakye, F. O.; Zhang, H. N.; Mu, S. C. Multifunctional Mo-N/C@MoS2 electrocatalysts for HER, OER, ORR, and Zn-air batteries. Adv. Funct. Mater. 2017, 27, 1702300.

45

Li, S. Z.; Chen, T.; Wen, J.; Gui, P. B.; Fang, G. J. In situ grown Ni9S8 nanorod/O-MoS2 nanosheet nanocomposite on carbon cloth as a free binder supercapacitor electrode and hydrogen evolution catalyst. Nanotechnology 2017, 28, 445407.

46

Hu, J.; Zhang, C. X.; Jiang, L.; Lin, H.; An, Y. M.; Zhou, D.; Leung, M. K. H.; Yang, S. Nanohybridization of MoS2 with layered double hydroxides efficiently synergizes the hydrogen evolution in alkaline media. Joule 2017, 1, 383–393.

47

Qin, S.; Lei, W. W.; Liu, D.; Chen, Y. Advanced N-doped mesoporous molybdenum disulfide nanosheets and the enhanced lithium-ion storage performance. J. Mater. Chem. A 2016, 4, 1440–1445.

48

Wang, W. H.; Kuai, L.; Cao, W.; Huttula, M.; Ollikkala, S.; Ahopelto, T.; Honkanen, A. P.; Huotari, S.; Yu, M. K.; Geng, B. Y. Mass-production of mesoporous MnCo2O4 spinels with manganese(IV)- and cobalt(II)- rich surfaces for superior bifunctional oxygen electrocatalysis. Angew. Chem., Int. Ed. 2017, 56, 14977–14981.

49

Wang, Z. C.; Chen, W.; Han, Z. L.; Zhu, J.; Lu, N.; Yang, Y.; Ma, D. K.; Chen, Y.; Huang, S. M. Pd embedded in porous carbon (Pd@CMK-3) as an active catalyst for Suzuki reactions: Accelerating mass transfer to enhance the reaction rate. Nano Res. 2014, 7, 1254–1262.

50

Zhou, X. S.; Wan, L. J.; Guo, Y. G. Facile synthesis of MoS2@CMK-3 nanocomposite as an improved anode material for lithium-ion batteries. Nanoscale 2012, 4, 5868–5871.

51

Zhang, Y. F.; Zuo, L. Z.; Huang, Y. P.; Zhang, L. S.; Lai, F. L.; Fan, W.; Liu, T. X. In-situ growth of few-layered MoS2 nanosheets on highly porous carbon aerogel as advanced electrocatalysts for hydrogen evolution reaction. ACS Sustainable Chem. Eng. 2015, 3, 3140–3148.

52

Liu, K. K.; Zhang, W. J.; Lee, Y. H.; Lin, Y. C.; Chang, M. T.; Su, C. Y.; Chang, C. S.; Li, H.; Shi, Y. M.; Zhang, H. et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 2012, 12, 1538–1544.

53

Luo, Y. T.; Li, X.; Cai, X. K.; Zou, X. L.; Kang, F. Y.; Cheng, H. M.; Liu, B. L. Two-dimensional MoS2 confined Co(OH)2 electrocatalysts for hydrogen evolution in alkaline electrolytes. ACS Nano 2018, 12, 4565–4573.

54

Baker, M. A.; Gilmore, R.; Lenardi, C.; Gissler, W. XPS investigation of preferential sputtering of S from MoS2 and determination of MoSx stoichiometry from Mo and S peak positions. Appl. Surf. Sci. 1999, 150, 255–262.

55

Farr, J. P. G. Molybdenum disulphide in lubrication. A review. Wear 1975, 35, 1–22.

56

Shao, J.; Gao, T.; Qu, Q. T.; Shi, Q.; Zuo, Z. C.; Zheng, H. H. Ultrafast Li-storage of MoS2 nanosheets grown on metal-organic framework-derived microporous nitrogen-doped carbon dodecahedrons. J. Power Sources 2016, 324, 1–7.

57

Lai, F. L.; Miao, Y. E.; Huang, Y. P.; Zhang, Y. F.; Liu, T. X. Nitrogen-doped carbon nanofiber/molybdenum disulfide nanocomposites derived from bacterial cellulose for high-efficiency electrocatalytic hydrogen evolution reaction. ACS Appl. Mater. 2016, 8, 3558–3566.

58

Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 2015, 5, 13801.

59

Ren, L. M.; Wang, C.; Li, W.; Dong, R. H.; Sun, H. X.; Liu, N.; Geng, B. Y. Heterostructural NiFe-LDH@Ni3S2 nanosheet arrays as an efficient electrocatalyst for overall water splitting. Electrochim. Acta 2019, 318, 42–50.

Nano Research
Pages 3116-3122
Cite this article:
Lu S, Wang W, Yang S, et al. Amorphous MoS2 confined in nitrogen-doped porous carbon for improved electrocatalytic stability toward hydrogen evolution reaction. Nano Research, 2019, 12(12): 3116-3122. https://doi.org/10.1007/s12274-019-2563-9
Topics:

1074

Views

26

Crossref

N/A

Web of Science

24

Scopus

2

CSCD

Altmetrics

Received: 16 October 2019
Revised: 30 October 2019
Accepted: 04 November 2019
Published: 15 November 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return