AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Vapor growth of WSe2/WS2 heterostructures with stacking dependent optical properties

Xueping Wu§Xiao Wang§Honglai LiZhouxiaosong ZengBiyuan ZhengDanliang ZhangFang LiXiaoli ZhuYing Jiang( )Anlian Pan( )
Key Laboratory for Micro-Nano Physics and Technology of Hunan ProvinceSchool of Physics and ElectronicsCollege of Materials and Engineering State Key Laboratory of Chemo/Biosensing and ChemometricsHunan UniversityChangsha410082China

§Xueping Wu and Xiao Wang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Two-dimensional (2D) vertically stacked heterostructures based on layered transition-metal dichalcogenides (TMDCs) have remarkable potential in future applications due to their rich interlayer related properties, such as interlayer excitons, tunable interlayer band alignments. However, the controlled growth of TMDC bilayer heterostructures with preferred stacking structure remains challenging. Here, we report a two-step van der Waals epitaxial vapor growth of WSe2/WS2 vertically stacked bilayer heterostructures with controllable commensurate crystallographic alignments (so called AA and AB stacking), by controlling the deposition temperature. Moiré patterns were obtained in both AA and AB stacked WSe2/WS2 heterostructures. The stacking configuration of the vertical heterostructures was verified by the second harmonic generation signals. Photoluminescence and Raman spectroscopy studies further confirm that the heterostructures with different stacking configuration have obviously different optical properties, which is ascribed to the distinct interlayer coupling and resonance excitation between the distinguishing AA and AB stacked heterostructures. The controlled growth of AA and AB stacked heterostructures could provide an importance platform not only for fundamental researches but also for functional electronic and optoelectronic device applications.

Electronic Supplementary Material

Download File(s)
12274_2019_2564_MOESM1_ESM.pdf (1.6 MB)

References

1

Late, D. J.; Huang, Y. K.; Liu, B.; Acharya, J.; Shirodkar, S. N.; Luo, J. J.; Yan, A. M.; Charles, D.; Waghmare, U. V.; Dravid, V. P. et al. Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 2013, 7, 4879–4891.

2

Yang, W. H.; Shang, J. Z.; Wang, J. P.; Shen, X. N.; Cao, B. C.; Peimyoo, N.; Zou, C. J.; Chen, Y.; Wang, Y. L.; Cong, C. X. et al. Electrically tunable valley-light emitting diode (vLED) based on CVD-grown monolayer WS2. Nano Lett. 2016, 16, 1560–1567.

3

Jeon, P. J.; Kim, J. S.; Lim, J. Y.; Cho, Y.; Pezeshki, A.; Lee, H. S.; Yu, S.; Min, S. W.; Im, S. Low power consumption complementary inverters with n-MoS2 and p-WSe2 dichalcogenide nanosheets on glass for logic and light-emitting diode circuits. ACS Appl. Mater. Interfaces 2015, 7, 22333–22340.

4

Pospischil, A.; Furchi, M. M.; Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p-n diode. Nat. Nanotechnol. 2014, 9, 257–261.

5

Sarkar, D.; Xie, X. J.; Liu, W.; Cao, W.; Kang, J. H.; Gong, Y. J.; Kraemer, S.; Ajayan, P. M.; Banerjee, K. A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 2015, 526, 91–95.

6

Duan, X. D.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Li, H. L.; Wu, X. P.; Tang, Y.; Zhang, Q. L.; Pan, A. L. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 2014, 9, 1024–1030.

7

Wang, W. Y; Klots, A.; Prasai, D.; Yang, Y M.; Bolotin, K. I.; Valentine, J. Hot electron-based near-infrared photodetection using bilayer MoS2. Nano Lett. 2015, 15, 7440–7444.

8

Wu, S. F.; Buckley, S.; Schaibley, J. R.; Feng, L. F.; Yan, J. Q.; Mandrus, D. G.; Hatami, F.; Yao, W.; Vučković, J.; Majumdar, A. et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 2015, 520, 69–72.

9

Zhou, Y L.; Liu, W.; Huang, X.; Zhang, A. H.; Zhang, Y; Wang, Z. L. Theoretical study on two-dimensional MoS2 piezoelectric nanogenerators. Nano Res. 2016, 9, 800–807.

10

Li, D.; Chen, M. Y; Sun, Z. Z.; Yu, P.; Liu, Z.; Ajayan, P. M.; Zhang, Z. X. Two-dimensional non-volatile programmable p-n junctions. Nat. Nanotechnol. 2017, 12, 901–906.

11

Fan, X. P.; Jiang, Y; Zhuang, X. J.; Liu, H. J.; Xu, T; Zheng, W. H.; Fan, P.; Li, H. L.; Wu, X. P.; Zhu, X. L. et al. Broken symmetry induced strong nonlinear optical effects in spiral WS2 nanosheets. ACS Nano 2017, 11, 4892–4898.

12

Li, H. L.; Liu, H. J.; Zhou, L. W.; Wu, X. P.; Pan, Y. H.; Ji, W.; Zheng, B. Y.; Zhang, Q. L.; Zhuang, X. J.; Zhu, X. L. et al. Strain-tuning atomic substitution in two-dimensional atomic crystals. ACS Nano 2018, 12, 4853–4860.

13

Hill, H. M.; Rigosi, A. F.; Roquelet, C.; Chernikov, A.; Berkelbach, T. C.; Reichman, D. R.; Hybertsen, M. S.; Brus, L. E.; Heinz, T. F. Observation of excitonic rydberg states in monolayer MoS2 and WS2 by photo-luminescence excitation spectroscopy. Nano Lett. 2015, 15, 2992–2997.

14

Seyler, K. L.; Schaibley, J. R.; Gong, P.; Rivera, P.; Jones, A. M.; Wu, S. F.; Yan. J. Q.; Mandrus, D. G.; Yao, W.; Xu, X. D. Electrical control of second-harmonic generation in a WSe2 monolayer transistor. Nat. Nanotechnol. 2015, 10, 407–411.

15

Li, H. L.; Duan, X. D.; Wu, X. P.; Zhuang, X. J.; Zhou, H.; Zhang, Q. L.; Zhu, X. L.; Hu, W.; Ren, P. Y; Guo, P. F. et al. Growth of alloy MoS2x Se2(1-x) nanosheets with fully tunable chemical compositions and optical properties. J. Am. Chem. Soc. 2014, 136, 3756–3759.

16

Shaw, J. C.; Zhou, H. L.; Chen, Y; Weiss, N. O.; Liu, Y; Huang, Y; Duan, X. F. Chemical vapor deposition growth of monolayer MoSe2 nanosheets. Nano Res. 2014, 7, 511–517.

17

Wang, K.; Huang, B.; Tian, M. K.; Ceballos, F.; Lin, M. W.; Mahjouri-Samani, M.; Boulesbaa, A.; Puretzky, A. A.; Rouleau, C. M.; Yoon, M. et al. Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy. ACS Nano 2016, 10, 6612–6622.

18

Parkin, W. M.; Balan, A.; Liang, L. B.; Das, P. M.; Lamparski, M.; Naylor, C. H.; Rodriguez-Manzo, J. A.; Johnson, A. T. C.; Meunier, V.; Drndic, M. Raman shifts in electron-irradiated monolayer MoS2. ACS Nano 2016, 10, 4134–4142.

19

Li, H. L.; Zhang, Q. L.; Duan, X. D.; Wu, X. P.; Fan, X. P.; Zhu, X. L.; Zhuang, X. J.; Hu, W.; Zhou, H.; Pan, A. L. et al. Lateral growth of composition graded atomic layer MoS2(1-x)Se2x nanosheets. J. Am. Chem. Soc. 2015, 137, 5284–5287.

20

Poellmann, C.; Steinleitner, P.; Leierseder, U.; Nagler, P.; Plechinger, G.; Porer, M.; Bratschitsch, R.; Schüller, C.; Korn, T.; Huber, R. Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2. Nat. Mater. 2015, 14, 889–893.

21

Wu, X. P.; Li, H. L.; Liu, H. J.; Zhuang, X. J.; Wang, X.; Fan, X. P.; Duan, X. D.; Zhu, X. L.; Zhang, Q. L.; Meixner, A. J. et al. Spatially composition-modulated two-dimensional WS2xSe2(1-x) nanosheets. Nanoscale 2017, 9, 4707–4712.

22

Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.

23

Qi, Z. Y.; Yang, T. F.; Li, D.; Li, H. L.; Wang, X.; Zhang, X. H.; Li, F.; Zheng, W. H.; Fan, P.; Zhuang, X. J. et al. High-responsivity two-dimensional p-PbI2/n-WS2 vertical heterostructure photodetectors enhanced by photogating effect. Mater. Horiz. 2019, 6, 1474–1480.

24

Li, H. L.; Wang, X.; Zhu, X. L.; Duan, X. G.; Pan, A. L. Composition modulation in one-dimensional and two-dimensional chalcogenide semiconductor nanostructures. Chem. Soc. Rev. 2018, 47, 7504–7521.

25

Wang, X. T.; Huang, L.; Peng, Y. T.; Huo, N. J.; Wu, K. D.; Xia, C. X.; Wei, Z. M.; Tongay, S.; Li, J. B. Enhanced rectification, transport property and photocurrent generation of multilayer ReSe2/MoS2 p-n heterojunctions. Nano Res. 2016, 9, 507–516.

26

Li, H. L.; Wu, X. P.; Liu, H. J.; Zheng, B. Y.; Zhang, Q. L.; Zhu, X. L.; Wei, Z.; Zhuang, X. J.; Zhou, H.; Tang, W. X. et al. Composition-modulated two-dimensional semiconductor lateral heterostructures via layer-selected atomic substitution. ACS Nano 2017, 11, 961–967.

27

Chiu, M. H.; Li, M. Y.; Zhang, W. J.; Hsu, W. T.; Chang, W. H.; Terrones, M.; Terrones, H.; Li, L. J. Spectroscopic signatures for interlayer coupling in MoS2-WSe2 van der Waals stacking. ACS Nano 2014, 8, 9649–9656.

28

Chiu, M. H.; Zhang, C. D.; Shiu, H. W.; Chuu, C. P.; Chen, C. H.; Chang, C. Y. S.; Chen, C. H.; Chou, M. Y.; Shih, C. K.; Li, L. J. Determination of band alignment in the single-layer MoS2/WSe2 heterojunction. Nat. Commun. 2015, 6, 7666.

29

Zhang, J.; Wang, J. H.; Chen, P.; Sun, Y.; Wu, S.; Jia, Z. Y.; Lu, X. B.; Yu, H.; Chen, W.; Zhu, J. Q. et al. Observation of strong interlayer coupling in MoS2/WS2 heterostructures. Adv. Mater. 2016, 28, 1950–1956.

30

Rivera, P.; Schaibley, J. R.; Jones, A. M.; Ross, J. S.; Wu, S. F.; Aivazian, G.; Klement, P.; Seyler, K.; Clark, G.; Ghimire, N. J. et al. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nat. Commun. 2015, 6, 6242.

31

Yang, T. F.; Zheng, B. Y.; Wang, Z.; Xu, T.; Pan, C.; Zou, J.; Zhang, X. H.; Qi, Z. Y.; Liu, H. J.; Feng, Y. X. et al. Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p-n junctions. Nat. Commun. 2017, 8, 1906.

32

Zheng, W. H.; Zheng, B. Y.; Yan, C. L.; Liu, Y.; Sun, X. X.; Qi, Z. Y.; Yang, T. F.; Jiang, Y.; Huang, W.; Fan, P. et al. Direct vapor growth of 2D vertical heterostructures with tunable band alignments and interfacial charge transfer behaviors. Adv. Sci. 2019, 6, 1802204.

33

Yang, T. F.; Wang, X.; Zheng, B. Y.; Qi, Z. Y.; Ma, C.; Fu, Y. H.; Hautzinger, M. P.; Jiang, Y.; Li, Z. W.; Fan, P. et al. Ultrahigh-performance optoelectronics demonstrated in ultrathin perovskite-based vertical semiconductor heterostructures. ACS Nano 2019, 13, 7996–8003.

34

Zhang, X. W.; Meng, F.; Christianson, J. R.; Arroyo-Torres, C.; Lukowski, M. A.; Liang, D.; Schmidt, J. R.; Jin, S. Vertical heterostructures of layered metal chalcogenides by van der Waals epitaxy. Nano Lett. 2014, 14, 3047–3054.

35

Gong, Y. J.; Lei, S. D.; Ye, G. L.; Li, B.; He, Y. M.; Keyshar, K.; Zhang, X.; Wang, Q. Z.; Lou, J.; Liu, Z. et al. Two-step growth of two-dimensional WSe2/MoSe2 heterostructures. Nano Lett. 2015, 15, 6135–6141.

36

Gong, Y. J.; Lin, J. H.; Wang, X. J.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135–1142.

37

Li, X. F.; Lin, M. W.; Lin, J. H.; Huang, B.; Puretzky, A. A.; Ma, C.; Wang, K.; Zhou, W.; Pantelides, S. T.; Chi, M. F. et al. Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy. Sci. Adv. 2016, 2, e1501882.

38

Yu, Y. F.; Hu, S.; Su, L. Q.; Huang, L. J.; Liu, Y.; Jin, Z. H.; Purezky, A. A.; Geohegan, D. B.; Kim, K. W.; Zhang, Y.; Cao, L. Y. Equally efficient interlayer exciton relaxation and improved absorption in epitaxial and nonepitaxial MoS2/WS2 heterostructures. Nano Lett. 2014, 15, 486–491.

39

Liu, K. H.; Zhang, L. M.; Cao, T.; Jin, C. H.; Qiu, D. A.; Zhou, Q.; Zettl, A.; Yang, P. D.; Louie, S. G.; Wang, F. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 2014, 5, 4966.

40

Zheng, S. J.; Sun, L. F.; Zhou, X. H.; Liu, F. C.; Liu, Z.; Shen, Z. X.; Fan, H. J. Coupling and interlayer exciton in twist-stacked WS2 bilayers. Adv. Opt. Mater. 2015, 3, 1600–1605.

41

Yan, J. X.; Xia, J.; Wang, X. L.; Liu, L.; Kuo, J. L.; Tay, B. K.; Chen, S.; Zhou, W.; Liu, Z.; Shen, Z. X. Stacking-dependent interlayer coupling in trilayer MoS2 with broken inversion symmetry. Nano Lett. 2015, 15, 8155–8161.

42

Zhao, W. J.; Ghorannevis, Z.; Amara, K. K.; Pang, J. R.; Toh, M.; Zhang, X.; Kloc, C.; Tan, P. H.; Eda, G. Lattice dynamics in mono-and few-layer sheets of WS2 and WSe2. Nanoscale 2013, 5, 9677–9683.

43

Shinde, S. M.; Dhakal, K. P.; Chen, X.; Yun, W. S.; Lee, J.; Kim, H.; Ahn, J. H. Stacking-controllable interlayer coupling and symmetric configuration of multilayered MoS2. NPG Asia Mater. 2018, 10, e468.

44

Wu, J, B.; Zhang, X.; Ijäs, M.; Han, W. P.; Qiao, X. F.; Li, X. L.; Jiang, D. D.; Ferrari, A. C.; Tan, P. H. Resonant Raman spectroscopy of twisted multilayer graphene. Nat. Commun. 2014, 5, 5309.

45

Zeng, Z. X. S.; Sun, X. X.; Zhang, D. L.; Zheng, W. H.; Fan, X. P.; He, M.; Xu, T.; Sun, L. T.; Wang, X.; Pan, A. L. Controlled vapor growth and nonlinear optical applications of large-area 3R phase WS2 and WSe2 atomic layers. Adv. Funct. Mater. 2019, 29, 1806874.

46

Liang, J.; Zhang, J.; Li, Z. Z.; Hong, H.; Wang, J. H.; Zhang, Z. H.; Zhou, X.; Qiao, R. X.; Xu, J. Y.; Gao, P. et al. Monitoring local strain vector in atomic-layered MoSe2 by second-harmonic generation. Nano Lett. 2017, 17, 7539–7543.

Nano Research
Pages 3123-3128
Cite this article:
Wu X, Wang X, Li H, et al. Vapor growth of WSe2/WS2 heterostructures with stacking dependent optical properties. Nano Research, 2019, 12(12): 3123-3128. https://doi.org/10.1007/s12274-019-2564-8
Topics:

843

Views

37

Crossref

N/A

Web of Science

36

Scopus

4

CSCD

Altmetrics

Received: 18 July 2019
Revised: 21 September 2019
Accepted: 06 November 2019
Published: 14 November 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return