Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Highly effective H2/D2 separation in a stable Cu-based metal-organic framework

Yanan Si1,3Xiang He2()Jie Jiang2Zhiming Duan2Wenjing Wang1Daqiang Yuan1()
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
University of the Chinese Academy of Sciences, Beijing 100049, China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

A three-dimensional copper metal-organic framework with the rare chabazite (CHA) topology namely FJI-Y11 has been constructed with flexibly carboxylic ligand 5,5'-[(1,4-phenylenebis(methylene))bis(oxy)]diisophthalic acid (H4L). FJI-Y11 exhibits high water stability with the pH range from 2 to 12 at temperature as high as 373 K. Importantly, FJI-Y11 also shows high efficiency of hydrogen isotope separation using dynamic column breakthrough experiments under atmospheric pressure at 77 K. Attributed to its excellent structural stability, FJI-Y11 possesses good regenerated performance and maintains high separation efficiency after three cycles of breakthrough experiments.

Electronic Supplementary Material

Download File(s)
12274_2019_2571_MOESM1_ESM.cif (1.2 MB)
12274_2019_2571_MOESM2_ESM.pdf (3.8 MB)
12274_2019_2571_MOESM3_ESM.pdf (383.6 KB)

References

[1]
J. J. M. Beenakker,; V. D. Borman,; S. Y. Krylov, Molecular transport in subnanometer pores: Zero-point energy, reduced dimensionality and quantum sieving. Chem. Phys. Lett. 1995, 232, 379-382.
[2]
D. Basmadjian, Adsorption equilibria of hydrogen, deuterium, and their mixtures. Part I. Can. J. Chem. 1960, 38, 141-148.
[3]
H. L. Johnston,; E. A. Long, Heat capacity curves of the simpler gases. vi. Rotational heat capacity curves of molecular deuterium and of deuterium hydride. The equilibrium between the ortho and para forms of deuterium. Free energy, total energy, entropy, heat capacity and dissociation of H2H2 and of H1H2, to 3000 °K. J. Chem. Phys. 1934, 2, 389-395.
[4]
R. Yaris,; J. R. Sams, Jr. Quantum treatment of the physical adsorption of isotopic species. J. Chem. Phys. 1962, 37, 571-576.
[5]
P. P. Povinec,; H. Bokuniewicz,; W. C. Burnett,; J. Cable,; M. Charette,; J. F. Comanducci,; E. A. Kontar,; W. S. Moore,; J. A. Oberdorfer,; J. de Oliveira, et al. Isotope tracing of submarine groundwater discharge offshore Ubatuba, Brazil: Results of the IAEA-UNESCO SGD project. J. Environ. Radioact. 2008, 99, 1596-1610.
[6]
F. Keppler,; J. T. G. Hamilton,; W. C. McRoberts,; I. Vigano,; M. Braß,; T. Röckmann, Methoxyl groups of plant pectin as a precursor of atmospheric methane: Evidence from deuterium labelling studies. New Phytol. 2008, 178, 808-814.
[7]
G. Zaccai, How soft is a protein? A protein dynamics force constant measured by neutron scattering. Science 2000, 288, 1604-1607.
[8]
G. Büldt,; H. U. Gally,; A. Seelig,; J. Seelig,; G. Zaccai, Neutron diffraction studies on selectively deuterated phospholipid bilayers. Nature 1978, 271, 182-184.
[9]
C. W. Shi,; P. Fricke,; L. Lin,; V. Chevelkov,; M. Wegstroth,; K. Giller,; S. Becker,; M. Thanbichler,; A. Lange, Atomic-resolution structure of cytoskeletal bactofilin by solid-state NMR. Sci. Adv. 2015, 1, e1501087.
[10]
H. Tanaka,; D. Noguchi,; A. Yuzawa,; T. Kodaira,; H. Kanoh,; K. Kaneko, Quantum effects on hydrogen isotopes adsorption in nanopores. J. Low Temp. Phys. 2009, 157, 352-373.
[11]
J. M. Salazar,; S. Lectez,; C. Gauvin,; M. Macaud,; J. P. Bellat,; G. Weber,; I. Bezverkhyy,; J. M. Simon, Adsorption of hydrogen isotopes in the zeolite NaX: Experiments and simulations. Int. J. Hydrogen Energy 2017, 42, 13099-13110.
[12]
A. J. W. Physick,; D. J. Wales,; S. H. R. Owens,; J. Shang,; P. A. Webley,; T. J. Mays,; V. P. Ting, Novel low energy hydrogen-deuterium isotope breakthrough separation using a trapdoor zeolite. Chem. Eng. J. 2016, 288, 161-168.
[13]
X. B. Zhao,; B. Xiao,; A. J. Fletcher,; K. M. Thomas, Hydrogen adsorption on functionalized nanoporous activated carbons. J. Phys. Chem. B 2005, 109, 8880-8888.
[14]
A. V. A. Kumar,; S. K. Bhatia, Quantum effect induced reverse kinetic molecular sieving in microporous materials. Phys. Rev. Lett. 2005, 95, 245901.
[15]
H. Tanaka,; H. Kanoh,; M. Yudasaka,; S. Iijima,; K. Kaneko, Quantum effects on hydrogen isotope adsorption on single-wall carbon nanohorns. J. Am. Chem. Soc. 2005, 127, 7511-7516.
[16]
F. Stéphanie-Victoire,; A. M. Goulay,; E. C. de Lara, Adsorption and coadsorption of molecular hydrogen isotopes in zeolites. 1. Isotherms of H2, HD, and D2 in NaA by thermomicrogravimetry. Langmuir 1998, 14, 7255-7259.
[17]
J. R. Cendagorta,; A. Powers,; T. J. H. Hele,; O. Marsalek,; Z. Bačić,; M. E. Tuckerman, Competing quantum effects in the free energy profiles and diffusion rates of hydrogen and deuterium molecules through clathrate hydrates. Phys. Chem. Chem. Phys. 2016, 18, 32169-32177.
[18]
X. Z. Chu,; Z. P. Cheng,; X. X. Xiang,; J. M. Xu,; Y. J. Zhao,; W. G. Zhang,; J. S. Lv,; Y. P. Zhou,; L. Zhou,; D. K. Moon, et al. Separation dynamics of hydrogen isotope gas in mesoporous and microporous adsorbent beds at 77 K: SBA-15 and zeolites 5A, Y, 10X. Int. J. Hydrogen Energy 2014, 39, 4437-4446.
[19]
H. Oh,; S. B. Kalidindi,; Y. Um,; S. Bureekaew,; R. Schmid,; R. A. Fischer,; M. Hirscher, A cryogenically flexible covalent organic framework for efficient hydrogen isotope separation by quantum sieving. Angew. Chem., Int. Ed. 2013, 52, 13219-13222.
[20]
I. Krkljus,; T. Steriotis,; G. Charalambopoulou,; A. Gotzias,; M. Hirscher, H2/D2 adsorption and desorption studies on carbon molecular sieves with different pore structures. Carbon 2013, 57, 239-247.
[21]
J. J. Cai,; Y. L. Xing,; X. B. Zhao, Quantum sieving: Feasibility and challenges for the separation of hydrogen isotopes in nanoporous materials. RSC Adv. 2012, 2, 8579-8586.
[22]
T. X. Nguyen,; H. Jobic,; S. K. Bhatia, Microscopic observation of kinetic molecular sieving of hydrogen isotopes in a nanoporous material. Phys. Rev. Lett. 2010, 105, 085901.
[23]
K. Kotoh,; S. Takashima,; T. Sakamoto,; T. Tsuge, Multi-component behaviors of hydrogen isotopes adsorbed on synthetic zeolites 4A and 5A at 77.4 K and 87.3 K. Fusion Eng. Des. 2010, 85, 1928-1934.
[24]
G. Garberoglio, Quantum sieving in organic frameworks. Chem. Phys. Lett. 2009, 467, 270-275.
[25]
B. Panella,; M. Hirscher,; B. Ludescher, Low-temperature thermal-desorption mass spectroscopy applied to investigate the hydrogen adsorption on porous materials. Micropor. Mesopor. Mater. 2007, 103, 230-234.
[26]
X. B. Zhao,; S. Villar-Rodil,; A. J. Fletcher,; K. M. Thomas, Kinetic isotope effect for H2 and D2 quantum molecular sieving in adsorption/ desorption on porous carbon materials. J. Phys. Chem. B 2006, 110, 9947-9955.
[27]
H. C. Zhou,; J. R. Long,; O. M. Yaghi, Introduction to metal-organic frameworks. Chem. Rev. 2012, 112, 673-674.
[28]
M. P. Suh,; H. J. Park,; T. K. Prasad,; D. W. Lim, Hydrogen storage in metal-organic frameworks. Chem. Rev. 2012, 112, 782-835.
[29]
M. T. Kapelewski,; T. Runčevski,; J. D. Tarver,; H. Z. H. Jiang,; K. E. Hurst,; P. A. Parilla,; A. Ayala,; T. Gennett,; S. A. FitzGerald,; C. M. Brown, et al. Record high hydrogen storage capacity in the metal-organic framework Ni2(m-dobdc) at near-ambient temperatures. Chem. Mater. 2018, 30, 8179-8189.
[30]
D. Noguchi,; H. Tanaka,; A. Kondo,; H. Kajiro,; H. Noguchi,; T. Ohba,; H. Kanoh,; K. Kaneko, Quantum sieving effect of three-dimensional Cu-based organic framework for H2 and D2. J. Am. Chem. Soc. 2008, 130, 6367-6372.
[31]
J. Teufel,; H. Oh,; M. Hirscher,; M. Wahiduzzaman,; L. Zhechkov,; A. Kuc,; T. Heine,; D. Denysenko,; D. Volkmer, MFU-4—A metal-organic framework for highly effective H2/D2 separation. Adv. Mater. 2013, 25, 635-639.
[32]
B. Paschke,; D. Denysenko,; B. Bredenkötter,; G. Sastre,; A. Wixforth,; D. Volkmer, Dynamic studies on kinetic H2/D2 quantum sieving in a narrow pore metal-organic framework grown on a sensor chip. Chem.—Eur. J. 2019, 25, 10803-10807.
[33]
I. Weinrauch,; I. Savchenko,; D. Denysenko,; S. M. Souliou,; H. H. Kim,; M. Le Tacon,; L. L. Daemen,; Y. Cheng,; A. Mavrandonakis,; A. J. Ramirez-Cuesta, et al. Capture of heavy hydrogen isotopes in a metal-organic framework with active Cu(I) sites. Nat. Commun. 2017, 8, 14496.
[34]
B. L. Chen,; X. B. Zhao,; A. Putkham,; K. L. Hong,; E. B. Lobkovsky,; E. J. Hurtado,; A. J. Fletcher,; K. M. Thomas, Surface interactions and quantum kinetic molecular sieving for H2 and D2 adsorption on a mixed metal-organic framework material. J. Am. Chem. Soc. 2008, 130, 6411-6423.
[35]
J. Y. Kim,; R. Balderas-Xicohténcatl,; L. D. Zhang,; S. G. Kang,; M. Hirscher,; H. Oh,; H. R. Moon, Exploiting diffusion barrier and chemical affinity of metal-organic frameworks for efficient hydrogen isotope separation. J. Am. Chem. Soc. 2017, 139, 15135-15141.
[36]
S. A. FitzGerald,; C. J. Pierce,; J. L. C. Rowsell,; E. D. Bloch,; J. A. Mason, Highly selective quantum sieving of D2 from H2 by a metal-organic framework as determined by gas manometry and infrared spectroscopy. J. Am. Chem. Soc. 2013, 135, 9458-9464.
[37]
S. A. FitzGerald,; B. Burkholder,; M. Friedman,; J. B. Hopkins,; C. J. Pierce,; J. M. Schloss,; B. Thompson,; J. L. C. Rowsell, Metal-specific interactions of H2 adsorbed within isostructural metal-organic frameworks. J. Am. Chem. Soc. 2011, 133, 20310-20318.
[38]
S. A. FitzGerald,; J. Hopkins,; B. Burkholder,; M. Friedman,; J. L. C. Rowsell, Quantum dynamics of adsorbed normal- and para-H2, HD, and D2 in the microporous framework MOF-74 analyzed using infrared spectroscopy. Phys. Rev. B 2010, 81, 104305.
[39]
H. Oh,; M. Hirscher, Quantum sieving for separation of hydrogen isotopes using MOFs. Eur. J. Inorg. Chem. 2016, 2016, 4278-4289.
[40]
H. Oh,; K. S. Park,; S. B. Kalidindi,; R. A. Fischer,; M. Hirscher, Quantum cryo-sieving for hydrogen isotope separation in microporous frameworks: An experimental study on the correlation between effective quantum sieving and pore size. J. Mater. Chem. A 2013, 1, 3244-3248.
[41]
M. Liu,; L. D. Zhang,; M. A. Little,; V. Kapil,; M. Ceriotti,; S. Y. Yang,; L. F. Ding,; D. L. Holden,; R. Balderas-Xicohténcatl,; D. L. He, et al. Barely porous organic cages for hydrogen isotope separation. Science 2019, 366, 613-620.
[42]
H. Oh,; I. Savchenko,; A. Mavrandonakis,; T. Heine,; M. Hirscher, Highly effective hydrogen isotope separation in nanoporous metal-organic frameworks with open metal sites: Direct measurement and theoretical analysis. ACS Nano 2014, 8, 761-770.
[43]
H. Wang,; X. L. Dong,; J. Z. Lin,; S. J. Teat,; S. Jensen,; J. Cure,; E. V. Alexandrov,; Q. B. Xia,; K. Tan,; Q. N. Wang, et al. Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers. Nat. Commun. 2018, 9, 1745.
[44]
Z. G. Hu,; Y. W. Peng,; Z. X. Kang,; Y. H. Qian,; D. Zhao, A Modulated Hydrothermal (MHT) approach for the facile synthesis of UiO-66-Type MOFs. Inorg. Chem. 2015, 54, 4862-4868.
[45]
L. Cooper,; N. Guillou,; C. Martineau,; E. Elkaim,; F. Taulelle,; C. Serre,; T. Devic, ZrIV coordination polymers based on a naturally occurring phenolic derivative. Eur. J. Inorg. Chem. 2014, 2014, 6281-6289.
[46]
G. Férey,; C. Mellot-Draznieks,; C. Serre,; F. Millange,; J. Dutour,; S. Surblé,; I. Margiolaki, A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005, 309, 2040-2042.
[47]
N. T. T. Nguyen,; H. Furukawa,; F. Gándara,; H. T. Nguyen,; K. E. Cordova,; O. M. Yaghi, Selective capture of carbon dioxide under humid conditions by hydrophobic chabazite-type zeolitic imidazolate frameworks. Angew. Chem., Int. Ed. 2014, 53, 10645-10648.
[48]
H. Hayashi,; A. P. Côté,; H. Furukawa,; M. O'Keeffe,; O. M. Yaghi, Zeolite a imidazolate frameworks. Nat. Mater. 2007, 6, 501-506.
[49]
K. S. Park,; Z. Ni,; A. P. Côté,; J. Y. Choi,; R. D. Huang,; F. J. Uribe-Romo,; H. K. Chae,; M. O'Keeffe,; O. M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186-10191.
[50]
Y. J. Pan,; W. T. Ford, Dendrimers with alternating amine and ether generations. J. Org. Chem. 1999, 64, 8588-8593.
[51]
D. Dubbeldam,; S. Calero,; D. E. Ellis,; R. Q. Snurr, RASPA: Molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol. Simulat. 2016, 42, 81-101.
[52]
S. L. Mayo,; B. D. Olafson,; W. A. Goddard, DREIDING: A generic force field for molecular simulations. J. Phys. Chem. 1990, 94, 8897-8909.
[53]
A. K. Rappe,; C. J. Casewit,; K. S. Colwell,; W. A. Goddard III,; W. M. Skiff, UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 1992, 114, 10024-10035.
[54]
T. F. Willems,; C. H. Rycroft,; M. Kazi,; J. C. Meza,; M. Haranczyk, Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Micropor. Mesopor. Mater. 2012, 149, 134-141.
[55]
R. L. Martin,; B. Smit,; M. Haranczyk, Addressing challenges of identifying geometrically diverse sets of crystalline porous materials. J. Chem. Inf. Model. 2012, 52, 308-318.
[56]
A. L. Spek, PLATON SQUEEZE: A tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallogr. C Struct. Chem. 2015, 71, 9-18.
[57]
L. N. McHugh,; M. J. McPherson,; L. J. McCormick,; S. A. Morris,; P. S. Wheatley,; S. J. Teat,; D. McKay,; D. M. Dawson,; C. E. F. Sansome,; S. E. Ashbrook, et al. Hydrolytic stability in hemilabile metal-organic frameworks. Nat. Chem. 2018, 10, 1096-1102.
[58]
D. Gygi,; E. D. Bloch,; J. A. Mason,; M. R. Hudson,; M. I. Gonzalez,; R. L. Siegelman,; T. A. Darwish,; W. L. Queen,; C. M. Brown,; J. R. Long, Hydrogen storage in the expanded pore metal-organic frameworks M2(dobpdc) (M = Mg, Mn, Fe, Co, Ni, Zn). Chem. Mater. 2016, 28, 1128-1138.
[59]
J. Y. Kim,; L. D. Zhang,; R. Balderas-Xicohténcatl,; J. Park,; M. Hirscher,; H. R. Moon,; H. Oh, Selective hydrogen isotope separation via breathing transition in MIL-53(Al). J. Am. Chem. Soc. 2017, 139, 17743-17746.
[60]
Q. Zhao,; W. Yuan,; J. M. Liang,; J. P. Li, Synthesis and hydrogen storage studies of metal-organic framework UiO-66. Int. J. Hydrogen Energy 2013, 38, 13104-13109.
[61]
J. W. Ren,; H. W. Langmi,; B. C. North,; M. Mathe,; D. Bessarabov, Modulated synthesis of zirconium-metal organic framework (Zr-MOF) for hydrogen storage applications. Int. J. Hydrogen Energy 2014, 39, 890-895.
[62]
S. Chavan,; J. G. Vitillo,; D. Gianolio,; O. Zavorotynska,; B. Civalleri,; S. Jakobsen,; M. H. Nilsen,; L. Valenzano,; C. Lamberti,; K. P. Lillerud, et al. H2 storage in isostructural UiO-67 and UiO-66 MOFs. Phys. Chem. Chem. Phys. 2012, 14, 1614-1626.
[63]
M. Zhou,; Q. Wang,; L. Zhang,; Y. C. Liu,; Y. Kang, Adsorption sites of hydrogen in zeolitic imidazolate frameworks. J. Phys. Chem. B 2009, 113, 11049-11053.
[64]
S. S. Y. Chui,; S. M. F. Lo,; J. P. H. Charmant,; A. G. Orpen,; I. D. Williams, A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 1999, 283, 1148-1150.
[65]
I. Krkljus,; M. Hirscher, Characterization of hydrogen/deuterium adsorption sites in nanoporous Cu-BTC by low-temperature thermal-desorption mass spectroscopy. Micropor. Mesopor. Mater. 2011, 142, 725-729.
[66]
V. K. Peterson,; C. M. Brown,; Y. Liu,; C. J. Kepert, Structural study of D2 within the trimodal pore system of a metal organic framework. J. Phys. Chem. C 2011, 115, 8851-8857.
[67]
C. Prestipino,; L. Regli,; J. G. Vitillo,; F. Bonino,; A. Damin,; C. Lamberti,; A. Zecchina,; P. L. Solari,; K. O. Kongshaug,; S. Bordiga, Local structure of framework Cu(II) in HKUST-1 metallorganic framework: Spectroscopic characterization upon activation and interaction with adsorbates. Chem. Mater. 2006, 18, 1337-1346.
[68]
J. Lee,; J. Li,; J. Jagiello, Gas sorption properties of microporous metal organic frameworks. J. Solid State Chem. 2005, 178, 2527-2532.
[69]
J. L. C. Rowsell,; O. M. Yaghi, Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. J. Am. Chem. Soc. 2006, 128, 1304-1315.
[70]
A. G. Wong-Foy,; A. J. Matzger,; O. M. Yaghi, Exceptional H2 saturation uptake in microporous metal-organic frameworks. J. Am. Chem. Soc. 2006, 128, 3494-3495.
[71]
B. Xiao,; P. S. Wheatley,; X. B. Zhao,; A. J. Fletcher,; S. Fox,; A. G. Rossi,; I. L. Megson,; S. Bordiga,; L. Regli,; K. M. Thomas, et al. High-capacity hydrogen and nitric oxide adsorption and storage in a metal-organic framework. J. Am. Chem. Soc. 2007, 129, 1203-1209.
Nano Research
Pages 518-525
Cite this article:
Si Y, He X, Jiang J, et al. Highly effective H2/D2 separation in a stable Cu-based metal-organic framework. Nano Research, 2021, 14(2): 518-525. https://doi.org/10.1007/s12274-019-2571-9
Topics:
Metrics & Citations  
Article History
Copyright
Return