AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Gate length dependent transport properties of in-plane core-shell nanowires with raised contacts

Alexandre Bucamp1Christophe Coinon1David Troadec1Sylvie Lepilliet1Gilles Patriarche2Xavier Wallart1Ludovic Desplanque1( )
Univ. Lille, CNRS, Centrale Lille, Yncréa ISEN, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France
C2N-UMR 9001 CNRS, Université Paris-Sud-Université Paris-Saclay, 91120 Palaiseau, France
Show Author Information

Graphical Abstract

Abstract

Three-dimensional (3D) nanoscale crystal shaping has become essential for the precise design of advanced electronic and quantum devices based on electrically gated transport. In this context, III-V semiconductor-based nanowires with low electron effective mass and strong spin-orbit coupling are particularly investigated because of their exceptional quantum transport properties and the good electrostatic control they provide. Among the main challenges involved in the processing of these nanodevices are (i) the management of the gate stack which requires ex-situ passivation treatment to reduce the density of traps at the oxide/semiconductor interface, (ii) the ability to get good ohmic contacts for source and drain electrodes and (iii) the scalability and reliability of the process for the fabrication of complex architectures based on nanowire networks. In this paper, we show that selective area molecular beam epitaxy of in-plane InGaAs/InP core-shell nanowires with raised heavily doped source and drain contacts can address these different issues. Electrical characterization of the devices down to 4 K reveals the positive impact of the InP shell on the gate electrostatic control and effective electron mobility. Although comparable to the best reported values for In(Ga)As nanostructures grown on InP, this latter is severely reduced for sub-100 nm channel highlighting remaining issue to reach the ballistic regime.

Electronic Supplementary Material

Download File(s)
12274_2019_2572_MOESM1_ESM.pdf (3.7 MB)

References

[1]
Waldron, N.; Merckling, C.; Guo, W.; Ong, P.; Teugels, L.; Ansar, I. S.; Tsvetanova, D.; Sebaai, F.; van Dorp, D. H.; Milenin, A.; et al. An InGaAs/InP quantum well finfet using the replacement fin process integrated in an RMG flow on 300 mm Si substrates. In 2014 Symposium on VLSI Technology (VLSI-Technology), Honolulu, USA, 2014, pp 1-2.
[2]
Borg, M.; Schmid, H.; Moselund, K. E.; Signorello, G.; Gignac, L.; Bruley, J.; Breslin, C.; Das Kanungo, P.; Werner, P.; Riel, H. Vertical III-V nanowire device integration on Si(100). Nano Lett. 2014, 14, 1914-1920.
[3]
Schmid, H.; Borg, M.; Moselund, K.; Gignac, L.; Breslin, C. M.; Bruley, J.; Cutaia, D.; Riel, H. Template-assisted selective epitaxy of III-V nanoscale devices for co-planar heterogeneous integration with Si. Appl. Phys. Lett. 2015, 106, 233101.
[4]
Tomioka, K.; Fukui, T. Gate-first process and EOT-scaling of III-V nanowire-based vertical transistors on Si. In 71st Device Research Conference, South Bend, USA, 2013, 488, 15-16.
[5]
Egard, M.; Ohlsson, L.; Arlelid, M.; Persson, K. M.; Borg, B. M.; Lenrick, F.; Wallenberg, R.; Lind, E.; Wernersson, L. E. High-frequency performance of self-aligned gate-last surface channel In0.53Ga0.47 AsMOSFET. IEEE Electron Dev. Lett. 2012, 33, 369-371.
[6]
Zota, C. B.; Lindgren, D.; Wernersson, L.; Lind, E. Quantized conduction and high mobility in selectively grown InxGa1-xAs nanowires. ACS Nano 2015, 9, 9892-9897.
[7]
Gooth, J.; Borg, M.; Schmid, H.; Schaller, V.; Wirths, S.; Moselund, K.; Luisier, M.; Karg, S.; Riel, H. Ballistic one-dimensional InAs nanowire cross-junction interconnects. Nano Lett. 2017, 17, 2596-2602.
[8]
Lee, J. S.; Choi, S.; Pendharkar, M.; Pennachio, D. J.; Markman, B.; Seas, M.; Koelling, S.; Verheijen, M. A.; Casparis, L.; Petersson, K. D. et al. Selective-area chemical beam epitaxy of in-plane InAs one-dimensional channels grown on InP(001), InP(111)B, and InP(011) surfaces. Phys. Rev. Mat. 2019, 3, 084606.
[9]
Fahed, M.; Desplanque, L.; Troadec, D.; Patriarche, G.; Wallart, X. Selective area heteroepitaxy of GaSb on GaAs (001) for in-plane InAs nanowire achievement. Nanotechnology 2016, 27, 505301.
[10]
Fahed, M.; Desplanque, L.; Troadec, D.; Patriarche, G.; Wallart, X. Threading dislocation free GaSb nanotemplates grown by selective molecular beam epitaxy on GaAs (001) for in-plane InAs nanowire integration. J. Cryst. Growth 2017, 477, 45-49.
[11]
Friedl, M.; Cerveny, K.; Weigele, P.; Tütüncüoglu, G.; Martí-Sánchez, S.; Huang, C. Y.; Patlatiuk, T.; Potts, H.; Sun, Z. Y.; Hill, M. O. et al. Template-assisted scalable nanowire networks. Nano Lett. 2018, 18, 2666-2671.
[12]
Pastorek, M.; Olivier, A.; Lechaux, Y.; Wichmann, N.; Karatsori, T.; Fahed, M.; Bucamp, A.; Addad, A.; Troadec, D.; Ghibaudo, G. et al. Bottom-up fabrication of InAs-on-nothing MOSFET using selective area molecular beam epitaxy. Nanotechnology 2019, 30, 035301.
[13]
Desplanque, L.; Bucamp, A.; Troadec, D.; Patriarche, G.; Wallart, X. In-plane InSb nanowires grown by selective area molecular beam epitaxy on semi-insulating substrate. Nanotechnology 2018, 29, 305705.
[14]
Aseev, P.; Fursina, A.; Boekhout, F.; Krizek, F.; Sestoft, J. E.; Borsoi, F.; Heedt, S.; Wang, G. Z.; Binci, L.; Martí-Sánchez, S. et al. Selectivity map for molecular beam Epitaxy of advanced III-V quantum nanowire networks. Nano Lett. 2019, 19, 218-227.
[15]
Krogstrup, P.; Ziino, N. L. B.; Chang, W.; Albrecht, S. M.; Madsen, M. H.; Johnson, E.; Nygård, J.; Marcus, C. M.; Jespersen, T. S. Epitaxy of semiconductor-superconductor nanowires. Nat. Mat. 2015, 14, 400-406.
[16]
Bucamp, A.; Coinon, C.; Codron, J. L.; Troadec, D.; Wallart, X.; Desplanque, L. Buffer free InGaAs quantum well and in-plane nanostructures on InP grown by atomic hydrogen assisted MBE. J. Cryst. Growth 2019, 512, 11-15.
[17]
Desplanque, L.; Fahed, M.; Han, X.; Chinni, V. K.; Troadec, D.; Chauvat, M. P.; Ruterana, P.; Wallart, X. influence of nanoscale faceting on the tunneling properties of near broken gap InAs/AlGaSb heterojunctions grown by selective area epitaxy. Nanotechnology 2014, 25, 465302.
[18]
Fahed, M.; Desplanque, L.; Coinon, C.; Troadec, D.; Wallart, X. Impact of P/in flux ratio and epilayer thickness on faceting for nanoscale selective area growth of InP by molecular beam epitaxy. Nanotechnology 2015, 26, 295301.
[19]
Ghibaudo, G. New method for the extraction of MOSFET parameters. Electron. Lett. 1988, 24, 543-545.
[20]
Shur, M. S. Low ballistic mobility in submicron HEMTs. IEEE Electron. Dev. Lett. 2002, 23, 511-513.
[21]
Łusakowski, J.; Knap, W.; Meziani, U.; Cesso, J. P.; El Fatimy, A.; Tauk, R.; Dyakonova, N. Ballistic and pocket limitations of mobility in nanometer Si metal-oxide semiconductor field-effect transistors. Appl. Phys. Lett. 2005, 87, 053507.
[22]
Karatsori T. A.; Bennamane K.; Theodorou C. G.; Czornomaz L.; Fompeyrine J.; Zota C.; Convertino C.; Ghibaudo G. Static and low frequency noise characterization of InGaAs MOSFETs and finfets on insulator. In 48th European Solid-State Device Research Conference (ESSDERC), Dresden, Germany, 2018, pp 166-169.
[23]
Fiori. G.; Iannaccone G. Threshold voltage dispersion and impurity scattering limited mobility in carbon nanotube field effect transistors with randomly doped reservoirs. In 2006 European Solid-State Device Research Conference. Montreux, Switzerland, 2006, pp 202-205.
[24]
Tettamanzi, G. C.; Paul, A.; Lansbergen, G. P.; Verduijn, J.; Lee, S.; Collaert, N.; Biesemans, S.; Klimeck, G.; Rogge, S. Thermionic emission as a tool to study transport in Undoped nFinFETs. IEEE Electron. Dev. Lett. 2010, 31, 150.
[25]
Goldberg, Y. A.; Shmidt, N. M. Gallium indium arsenide (GaxIn1-xAs). In Handbook Series on Semiconductor Parameters. Levinshtein, M.; Rumyantsev, S.; Shur, M; World Scientific: Singapore, 1996; pp 62-88.
[26]
Lee, S.; Huang, C. Y.; Cohen-Elias, D.; Thibeault, B. J.; Mitchell, W.; Chobpattana, V.; Stemmer, S.; Gossard, A. C.; Rodwell, M. J. W. Highly scalable raised source/drain InAs quantum well MOSFETs exhibiting ION = 482 μA/μm at IOFF = 100 nA/μm and VDD = 0.5 V. IEEE Electron Dev. Lett. 2014, 35, 621-623.
Nano Research
Pages 61-66
Cite this article:
Bucamp A, Coinon C, Troadec D, et al. Gate length dependent transport properties of in-plane core-shell nanowires with raised contacts. Nano Research, 2020, 13(1): 61-66. https://doi.org/10.1007/s12274-019-2572-8
Topics:

755

Views

2

Crossref

N/A

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 27 September 2019
Revised: 18 November 2019
Accepted: 19 November 2019
Published: 21 December 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return