AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Fishbone-like platinum-nickel nanowires as an efficient electrocatalyst for methanol oxidation

Jinquan Chang1,2Luting Song1Yuanqing Xu1Yanhong Ma1Cheng Liang1Wenyu Jiang1Yong Zhang1,2( )
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
Show Author Information

Graphical Abstract

Abstract

Platinum (Pt)-based electrocatalyst with low Pt content and high electrocatalytic performance is highly desired in fuel cell applications. Herein, we demonstrated that platinum-nickel (Pt-Ni) nanowires with an average composition of PtNi3 and a fishbone structure can be readily synthesized and used as an efficient electrocatalyst toward methanol oxidation reaction (MOR). The PtNi3 fishbone-like nanowires (PtNi3-FBNWs) present features such as richer Pt on the surface than in the bulk, high-index facets on the rough surface, and polyhedral facets at the ends of side chains. Such compositional and structural features could be determinative to the enhanced performance in the electrocatalysis of MOR. Compared with commercial 20% Pt/carbon black (Pt/C), the specific activity and mass activity of the PtNi3-FBNWs are enhanced by approximately 4.76 and 3.02 times, respectively. The stability of electrocatalysis is significantly improved as well. Such comprehensive enhancement indicates that the PtNi3-FBNWs would be a promising candidate toward MOR in fuel cells.

Electronic Supplementary Material

Download File(s)
12274_2019_2573_MOESM1_ESM.pdf (5.7 MB)

References

[1]
Huang, H. J.; Yang, S. B.; Vajtai, R.; Wang, X.; Ajayan, P. M. Pt-decorated 3D architectures built from graphene and graphitic carbon nitride nanosheets as efficient methanol oxidation catalysts. Adv. Mater. 2014, 26, 5160-5165.
[2]
Du, X. W.; Luo, S. P.; Du, H. Y.; Tang, M.; Huang, X. D.; Shen, P. K. Monodisperse and self-assembled Pt-Cu nanoparticles as an efficient electrocatalyst for the methanol oxidation reaction. J. Mater. Chem. A 2016, 4, 1579-1585.
[3]
Shao, M. H.; Chang, Q. W.; Dodelet, J. P.; Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 2016, 116, 3594-3657.
[4]
Luo, M. C.; Sun, Y. J.; Zhang, X.; Qin, Y. N.; Li, M. Q.; Li, Y. J.; Li, C. J.; Yang, Y.; Wang, L.; Gao, P. et al. Stable high-index faceted Pt skin on zigzag-like PtFe nanowires enhances oxygen reduction catalysis. Adv. Mater. 2018, 30, 1705515.
[5]
Bu, L. Z.; Guo, S. J.; Zhang, X.; Shen, X.; Su, D.; Lu, G.; Zhu, X.; Yao, J. L.; Guo, J.; Huang, X. Q. Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis. Nat. Commun. 2016, 7, 11850.
[6]
Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230-1234.
[7]
Bu, L. Z.; Ding, J. B.; Guo, S. J.; Zhang, X.; Su, D.; Zhu, X.; Yao, J. L.; Guo, J.; Lu, G.; Huang, X. Q. A general method for multimetallic platinum alloy nanowires as highly active and stable oxygen reduction catalysts. Adv. Mater. 2015, 27, 7204-7212.
[8]
Sun, X. H.; Jiang, K. Z.; Zhang, N.; Guo, S. J.; Huang, X. Q. Crystalline control of {111} bounded Pt3Cu nanocrystals: Multiply-twinned Pt3Cu icosahedra with enhanced electrocatalytic properties. ACS Nano 2015, 9, 7634-7640.
[9]
Huang, H. W.; Li, K.; Chen, Z.; Luo, L. H.; Gu, Y. Q.; Zhang, D. Y.; Ma, C.; Si, R.; Yang, J. L.; Peng, Z. M. et al. Achieving remarkable activity and durability toward oxygen reduction reaction based on ultrathin Rh-doped Pt nanowires. J. Am. Chem. Soc. 2017, 139, 8152-8159.
[10]
Bu, L. Z.; Shao, Q.; Huang X. Q. Highly porous Pt-Pb nanostructures as active and ultrastable catalysts for polyhydric alcohol electrooxidations. Sci. China Mater. 2019, 62, 341-350.
[11]
Toda, T.; Igarashi, H.; Uchida, H.; Watanabe, M. Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J. Electrochem. Soc. 1999, 146, 3750-3756.
[12]
Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241-247.
[13]
Iwasita, T. Electrocatalysis of methanol oxidation. Electrochim. Acta 2002, 47, 3663-3674.
[14]
Wang, W.; Lv, F.; Lei, B.; Wan, S.; Luo, M. C.; Guo, S. J. Tuning nanowires and nanotubes for efficient fuel-cell electrocatalysis. Adv. Mater. 2016, 28, 10117-10141.
[15]
Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414-1419.
[16]
Zhang, L.; Niu, W. X.; Xu, G. B. Synthesis and applications of noble metal nanocrystals with high-energy facets. Nano Today 2012, 7, 586-605.
[17]
Chen, M.; Wu, B. H.; Yang, J.; Zheng, N. F. Small adsorbate-assisted shape control of Pd and Pt nanocrystals. Adv. Mater. 2012, 24, 862-879.
[18]
Porter, N. S.; Wu, H.; Quan, Z. W.; Fang, J. Y. Shape-control and electrocatalytic activity-enhancement of Pt-based bimetallic nanocrystals. Acc. Chem. Res. 2013, 46, 1867-1877.
[19]
Luo, M. C.; Sun, Y. J.; Qin, Y. N.; Chen, S. L.; Li, Y. J.; Li, C. J.; Yang, Y.; Wu, D.; Xu, N. Y.; Xing, Y. et al. Surface and near-surface engineering of PtCo nanowires at atomic scale for enhanced electrochemical sensing and catalysis. Chem. Mater. 2018, 30, 6660-6667.
[20]
Li, K.; Li, X. X.; Huang, H. W.; Luo, L. H.; Li, X.; Yan, X. P.; Ma, C.; Si, R.; Yang, J. L.; Zeng, J. One-nanometer-thick PtNiRh trimetallic nanowires with enhanced oxygen reduction electrocatalysis in acid media: Integrating multiple advantages into one catalyst. J. Am. Chem. Soc. 2018, 140, 16159-16167.
[21]
Bu, L. Z.; Feng, Y. G.; Yao, J. L.; Guo, S. J.; Guo, J.; Huang, X. Q. Facet and dimensionality control of Pt nanostructures for efficient oxygen reduction and methanol oxidation electrocatalysts. Nano Res. 2016, 9, 2811-2821.
[22]
Zheng, J.; Cullen, D. A.; Forest, R. V.; Wittkopf, J. A.; Zhuang, Z. B.; Sheng, W. C.; Chen, J. G.; Yan, Y. S. Platinum-ruthenium nanotubes and platinum-ruthenium coated copper nanowires as efficient catalysts for electro-oxidation of methanol. ACS Catal. 2015, 5, 1468-1474.
[23]
Cui, C. H.; Li, H. H.; Yu, S. H. A general approach to electrochemical deposition of high quality free-standing noble metal (Pd, Pt, Au, Ag) sub-micron tubes composed of nanoparticles in polar aprotic solvent. Chem. Commun. 2010, 46, 940-942.
[24]
Li, H. H.; Zhao, S.; Gong, M.; Cui, C. H.; He, D.; Liang, H. W.; Wu, L.; Yu, S. H. Ultrathin PtPdTe nanowires as superior catalysts for methanol electrooxidation. Angew. Chem., Int. Ed. 2013, 52, 7472-7476.
[25]
Zhu, H. Y.; Zhang, S.; Guo, S. J.; Su, D.; Sun, S. H. Synthetic control of FePtM nanorods (M = Cu, Ni) to enhance the oxygen reduction reaction. J. Am. Chem. Soc. 2013, 135, 7130-7133.
[26]
Zhu, H. Y.; Zhang, S.; Su, D.; Jiang, G. M.; Sun, S. H. Surface profile control of FeNiPt/Pt core/shell nanowires for oxygen reduction reaction. Small 2015, 11, 3545-3549.
[27]
Xie, J. P.; Zhang, Q. B.; Lee, J. Y.; Wang, D. I. C. General method for extended metal nanowire synthesis: Ethanol induced self-assembly. J. Phys. Chem. C 2007, 111, 17158-17162.
[28]
Lai, J. P.; Niu, W. X.; Luque, R.; Xu, G. B. Solvothermal synthesis of metal nanocrystals and their applications. Nano Today 2015, 10, 240-267.
[29]
Chen, M.; Pica, T.; Jiang, Y. B.; Li, P.; Yano, K.; Liu, J. P.; Datye, A. K.; Fan, H. Y. Synthesis and self-assembly of FCC phase FePt nanorods. J. Am. Chem. Soc. 2007, 129, 6348-6349.
[30]
Ahmadi, T. S.; Wang, Z. L.; Green, T. C.; Henglein, A.; El-Sayed, M. A. Shape-controlled synthesis of colloidal platinum nanoparticles. Science 1996, 272, 1924-1925.
[31]
Gilroy, K. D.; Ruditskiy, A.; Peng, H. C.; Qin, D.; Xia, Y. N. Bimetallic nanocrystals: Syntheses, properties, and applications. Chem. Rev. 2016, 116, 10414-10472.
[32]
Chen, Y. X.; Chen, S. P.; Zhou, Z. Y.; Tian, N.; Jiang, Y. X.; Sun, S. G.; Ding, Y.; Wang, Z. L. Tuning the shape and catalytic activity of fe nanocrystals from rhombic dodecahedra and tetragonal bipyramids to cubes by electrochemistry. J. Am. Chem. Soc. 2009, 131, 10860-10862.
[33]
Yao, K. X.; Yin, X. M.; Wang, T. H.; Zeng, H. C. Synthesis, self-assembly, disassembly, and reassembly of two types of Cu2O nanocrystals unifaceted with {001} or {110} planes. J. Am. Chem. Soc. 2010, 132, 6131-6144.
[34]
Niu, W. X.; Zhang, L.; Xu, G. B. Shape-controlled synthesis of single-crystalline palladium nanocrystals. ACS Nano 2010, 4, 1987-1996.
[35]
Jeong, G. H.; Kim, M.; Lee, Y. W.; Choi, W.; Oh, W. T.; Park, Q. H.; Han, S. W. Polyhedral au nanocrystals exclusively bound by {110} facets: The rhombic dodecahedron. J. Am. Chem. Soc. 2009, 131, 1672-1673.
[36]
Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339-1343.
Nano Research
Pages 67-71
Cite this article:
Chang J, Song L, Xu Y, et al. Fishbone-like platinum-nickel nanowires as an efficient electrocatalyst for methanol oxidation. Nano Research, 2020, 13(1): 67-71. https://doi.org/10.1007/s12274-019-2573-7
Topics:

831

Views

23

Crossref

N/A

Web of Science

23

Scopus

2

CSCD

Altmetrics

Received: 17 July 2019
Revised: 25 October 2019
Accepted: 20 November 2019
Published: 29 November 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return