Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Highly graphitized carbon nanosheets with embedded Ni nanocrystals as anode for Li-ion batteries

Francisco Javier Soler-Piña1Celia Hernández-Rentero1Alvaro Caballero1()Julián Morales1()Enrique Rodríguez-Castellón2Jesús Canales-Vázquez3
Dpto. Química Inorgánica e Ingeniería Química, Instituto de Química Fina y Nanoquímica, Universidad de Córdoba, 14071 Córdoba, Spain
Dpto. Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
Instituto de Energías Renovables, Universidad de Castilla-La Mancha, Paseo de La Investigación 1, 02071 Albacete, Spain
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

A C/Ni composite was prepared via thermal decomposition of a nickel oleate complex at 700 °C, yielding disperse Ni nanocrystals with an average size of 20 nm, encapsulated by carbon nanosheets as deduced from transmission electron microscopy (TEM) images and confirmed from X-ray photoelectron spectroscopy (XPS). Furthermore, the X-ray diffraction pattern revealed a good ordering of the carbon layers, forced by the Ni encapsulation to adopt a bending structure. Considering the close interaction between the graphitized framework and the metallic nanoparticles we have studied the properties of the composite as an anode for Li-ion batteries. Compared with other nanostructured synthetic carbons, this carbon composite has a low voltage hysteresis and a modest irreversible capacity value, properties that play a significant role in its behaviour as electrodes in full cell configuration. At moderate rate values, 0.25 C, the electrode delivers an average capacity value around 723 mAh·g-1 on cycling, among the highest values so far reported for this carbon type. At higher rate values, 1 C, the average capacity values delivered by the cell on cycling decrease, around 205 mAh·g-1, but it maintains good capacity retention, a coulombic efficiency close to 100% after the first cycles and recovery of the capacity values when the rate is restored from 3 to 0.1 C.

Electronic Supplementary Material

Download File(s)
12274_2019_2576_MOESM1_ESM.pdf (3.2 MB)

References

[1]
Weller, H. Colloidal Semiconductor Q-Particles: Chemistry in the transition region between solid state and molecules. Angew. Chem., Int. Ed. 1993, 32, 41-53.
[2]
Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933-937.
[3]
Tao, Y. S.; Kanoh, H.; Abrams, L.; Kaneko, K. Mesopore-modified zeolites: Preparation, characterization, and applications. Chem. Rev. 2006, 106, 896-910.
[4]
Hyeon, T. Chemical synthesis of magnetic nanoparticles. Chem. Commun. 2003, 927-934.
[5]
Lewis, E.; Haigh, S.; O’Brien, P. The synthesis of metallic and semiconducting nanoparticles from reactive melts of precursors. J. Mater. Chem. A 2014, 2, 570-580.
[6]
Park, J.; An, K.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hwang, N. M.; Hyeon, T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3, 891-895.
[7]
Jana, N. R.; Chen, Y. F.; Peng, X. G. Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem. Mater. 2004, 16, 3931-3935.
[8]
Kim, Y. H.; Kang, Y. S.; Lee, W. J.; Jo, B. G.; Jeong, J. H. Synthesis of Cu nanoparticles prepared by using thermal decomposition of Cu-oleate complex. Mol. Cryst. Liq. Cryst. 2006, 445, 231/[521]-238/[528].
[9]
Bao, N. Z.; Shen, L. M.; Wang, Y.; Padhan, P.; Gupta, A. A Facile thermolysis route to monodisperse ferrite nanocrystals. J. Am. Chem. Soc. 2007, 129, 12374-12375.
[10]
Kim, S. G.; Terashi, Y.; Purwanto, A.; Okuyama, K. Synthesis and film deposition of Ni nanoparticles for base metal electrode applications. Colloid. Surf. A Physicochem. Eng. Asp. 2009, 337, 96-101.
[11]
Xiao, Q. F.; Sohn, H.; Chen, Z.; Toso, D.; Mechlenburg, M.; Zhou, Z. H.; Poirier, E.; Dailly, A.; Wang, H. Q.; Wu, Z. B. et al. Mesoporous metal and metal alloy particles synthesized by aerosol-assisted confined growth of nanocrystals. Angew. Chem., Int. Ed. 2012, 51, 10546-10550.
[12]
Jiao, Y. C.; Han, D. D.; Ding, Y.; Zhang, X. F.; Guo, G. N.; Hu, J. H.; Yang, D.; Dong, A. G. Fabrication of three-dimensionally interconnected nanoparticle superlattices and their lithium-ion storage properties. Nat. Commun. 2015, 6, 6420.
[13]
Buck, M. R.; Biacchi, A. J.; Schaak, R. E. Insights into the thermal decomposition of Co(II) oleate for the shape-controlled synthesis of Wurtzite-type CoO nanocrystals. Chem. Mater. 2014, 26, 1492-1499.
[14]
Bau, J. A.; Li, P.; Marenco, A. J.; Trudel, S.; Olsen, B. C.; Luber, E. J.; Buriak, J. M. Nickel/Iron oxide nanocrystals with a nonequilibrium phase: Controlling size, shape, and composition. Chem. Mater. 2014, 16, 4796-4804.
[15]
Behera, B. C.; Ravindra, A. V.; Padhan, P. Structural phase transformation of nickel nanostructures with synthetic approach conditions. J. Appl. Phys. 2014, 115, 17B510.
[16]
Jiao, Y. C.; Han, D. D.; Liu, L. M.; Ji, L.; Guo, G. N.; Hu, J. H.; Yang, D.; Dong, A. G. Highly ordered mesoporous few-layer graphene frameworks enabled by Fe3O4 nanocrystal superlattices. Angew. Chem., Int. Ed. 2015, 54, 5727-5731.
[17]
Yu, H. J.; Li, H. W.; Yuan, S. Y.; Yang, Y. C.; Zheng, J. H.; Hu, J. H.; Yang, D.; Wang, Y. G.; Dong, A. G. Three-dimensionally ordered, ultrathin graphitic-carbon frameworks with cage-like mesoporosity for highly stable Li-S batteries. Nano Res. 2017, 10, 2495-2507.
[18]
Han, D. D.; Jiao, Y. C.; Han, W. Q.; Wu, G. H.; Li, T. T.; Yang, D.; Dong, A. G. A molecular-based approach for the direct synthesis of highly-ordered, homogeneously-doped mesoporous carbon frameworks. Carbon 2018, 140, 265-275.
[19]
Xu, S. H.; Zhang, F. Y.; Kang, Q.; Liu, S. H.; Cai, Q. Y. The effect of magnetic field on the catalytic graphitization of phenolic resin in the presence of Fe-Ni. Carbon 2009, 47, 3233-3237.
[20]
Long, D. H.; Li, W.; Qiao, W. M.; Miyawaki, J.; Yoon, S. H.; Mochida, I.; Ling, L. C. Graphitization behaviour of chemically derived graphene sheets. Nanoscale 2011, 3, 3652-3656.
[21]
Abouimrane, A.; Compton, O. C.; Amine, K.; Nguyen, S. T. Non-annealed graphene paper as a binder-free anode for lithium-ion batteries. J. Phys. Chem. C 2010, 114, 12800-12804.
[22]
Vargas, Ó.; Caballero, Á.; Morales, J.; Rodríguez-Castellón, E. Contribution to the understanding of capacity fading in graphene nanosheets acting as an anode in full li-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 3290-3298.
[23]
Bokobza, L.; Bruneel, J. L.; Couzi, M. Raman spectroscopy as a tool for the analysis of carbon-based materials (highly oriented pyrolitic graphite, multilayer graphene and multiwall carbon nanotubes) and of some of their elastomeric composites. Vibrat. Spectros. 2014, 74, 57-63.
[24]
Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.
[25]
Courtel, F. M.; Niketic, S.; Duguay, D.; Abu-Lebdeh, Y.; Davidson, I. J. Water-soluble binders for MCMB carbon anodes for lithium-ion batteries. J. Power Sources 2011, 196, 2128-2134.
[26]
Ding, F.; Xu, W.; Choi, D.; Wang, W.; Li, X. L.; Engelhard, M. H.; Chen, X. L.; Yang, Z. G.; Zhang, J. G. Enhanced performance of graphite anode materials by AlF3 coating for lithium-ion batteries. J. Mater. Chem. 2012, 22, 12745-12751.
[27]
Zhao, D. D.; Wang, L.; Yu, P.; Zhao, L.; Tian, C. G.; Zhou, W.; Zhang, L.; Fu, H. G. From graphite to porous graphene-like nanosheets for high rate lithium-ion batteries. Nano Res. 2015, 8, 2998-3010.
[28]
Yao, J.; Wang, G. X.; Ahn, J. H.; Liu, H. K.; Dou, S. X. Electrochemical studies of graphitized mesocarbon microbeads as an anode in lithium-ion cells. J. Power Sources 2003, 114, 292-297.
[29]
Hasa, I.; Hassoun, J.; Passerini, S. Nanostructured Na-ion and Li-ion anodes for battery application: A comparative overview. Nano Res. 2017, 10, 3942-3969.
[30]
Gao, M. Y.; Liu, N. Q.; Chen, Y. L.; Guan, Y. P.; Wang, W. K.; Zhang, H.; Wang, F.; Huang, Y. Q. An in situ self-developed graphite as high capacity anode of Lithium-ion Batteries. Chem. Commun. 2015, 51, 12118-12121.
[31]
Carbone, L.; Coneglian, T.; Gobet, M.; Munoz, S.; Devany, M.; Greenbaum, S.; Hassoun, J. A simple approach for making a viable, safe, and high-performances lithium sulfur battery. J. Power Sources 2018, 377, 26-35.
[32]
Luna-Lama, F.; Hernández-Rentero, C.; Caballero, A.; Morales, J. Biomass-derived carbon/γ-MnO2 nanorods/S composites prepared by facile procedures with improved performance for Li/S batteries. Electrochim. Acta 2018, 292, 522-531.
[33]
Peled, E.; Menkin, S. Review-SEI: Past, present and future. J. Electrochem. Soc. 2017, 164, A1703-A1719.
[34]
Zhang, S. S. Effect of discharge cutoff voltage on reversibility of lithium/sulfur batteries with LiNO3-contained electrolyte. J. Electrochem. Soc. 2012, 159, A920-A923.
[35]
Wang, L.; Zhao, J. S.; He, X. M.; Ren, J. G.; Zhao, H. P.; Gao, J.; Li, J. J.; Wan, C. R.; Jiang, C. Y. Investigation of modified nature graphite anodes by electrochemical impedance spectroscopy. Int. J. Electrochem. Sci. 2012, 7, 554-560.
[36]
Guo, P.; Song, H. H.; Chen, X. H. Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries. Electrochem. Commun. 2009, 11, 1320-1324.
[37]
Yi, J.; Li, X. P.; Hu, S. J.; Li, W. S.; Zhou, L.; Xu, M. Q.; Lei, J. F.; Hao, L. S. Preparation of hierarchical porous carbon and its rate performance as anode of lithium ion battery. J. Power Sources 2011, 196, 6670-6675.
[38]
Li, G. D.; Xu, L. Q.; Hao, Q.; Wang, M.; Qian, Y. T. Synthesis, characterization and application of carbon nanocages as anode materials for high-performance lithium-ion batteries. RSC Adv. 2012, 2, 284-291.
[39]
Ng, S. H.; Wang, J.; Guo, Z. P.; Chen, J.; Wang, G. X.; Liu, H. K. Single wall carbon nanotube paper as anode for lithium-ion battery. Electrochim. Acta 2005, 51, 23-28.
[40]
Xue, J. S.; Dahn, J. R. Dramatic effect of oxidation on lithium insertion in carbons made from epoxy resins. J. Electrochem. Soc. 1995, 142, 3668-3677.
[41]
Buiel, E.; Dahn, J. R. Reduction of the irreversible capacity in hard-carbon anode materials prepared from sucrose for Li-ion Batteries. J. Electrochem, Soc. 1998, 145, 1977-1981.
[42]
Hu, Y. S.; Adelhelm, P.; Smarsly, B. M.; Hore, S.; Antonietti, M.; Maier, J. Synthesis of hierarchically porous carbon monoliths with highly ordered-microstructure and their application in rechargeable lithium batteries with high-rate capability. Adv. Funct. Mater. 2007, 17, 1873-1878.
[43]
Arrebola, J. C.; Caballero, A.; Hernán, L.; Morales, J.; Olivares-Marín, M.; Gómez-Serrano, V. Improving the performance of biomass-derived carbons in Li-ion batteries by controlling the lithium insertion process. J. Electrochem. Soc. 2010, 157, A791-A797.
[44]
Arrebola, J. C.; Caballero, A.; Hernán, L.; Morales, J. Graphitized carbons of variable morphology and crystallinity: A comparative study of their performance in lithium cells. J. Electrochem. Soc. 2009, 156, A986-A992.
[45]
Cai, X. Y.; Lai, L. F.; Shen, Z. X.; Lin, J. Y. Graphene and graphene-based composites as Li-ion battery electrode materials and their application in full cells. J. Mater. Chem. A 2017, 5, 15423-15446.
[46]
Landi, B. J.; Ganter, M. J.; Cress, C. D.; DiLeo, R. A.; Raffaelle, R. P. Carbon nanotubes for lithium ion batteries. Energy Environ. Sci. 2009, 2, 638-654.
[47]
Xiao, J. P.; Yao, M. G.; Zhu, K.; Zhang, D.; Zhao, S. J.; Lu, S. C.; Liu, B.; Cui, W.; Liu, B. B. Facile synthesis of hydrogenated carbon nanospheres with a graphite-like ordered carbon structure. Nanoscale 2013, 5, 11306-11312.
[48]
Yang, S. B.; Feng, X. L.; Zhi, L. J.; Cao, Q.; Maier, J.; Müllen, K. Nanographene-constructed hollow carbon spheres and their favorable electroactivity with respect to lithium storage. Adv. Mater. 2010, 22, 838-842.
[49]
Han, F. D.; Bai, Y. J.; Liu, R.; Yao, B.; Qi, Y. X.; Lun, N.; Zhang, J. X. Template-free synthesis of interconnected hollow carbon nanospheres for high-performance anode material in lithium-ion batteries. Adv. Energy Mater. 2011, 1, 798-801.
[50]
Vargas C, O. A.; Caballero, Á.; Morales, J. Can the performance of graphenenanosheets for lithium storage in Li-ion batteries be predicted? Nanoscale 2012, 4, 2083-2092.
[51]
Cheng, Q.; Okamoto, Y.; Tamura, N.; Tsuji, M.; Maruyama, S.; Matsuo, Y. Graphene-like-graphite as fast-chargeable and high-capacity anode materials for lithium ion batteries. Sci. Rep. 2017, 7, 14782.
Nano Research
Pages 86-94
Cite this article:
Javier Soler-Piña F, Hernández-Rentero C, Caballero A, et al. Highly graphitized carbon nanosheets with embedded Ni nanocrystals as anode for Li-ion batteries. Nano Research, 2020, 13(1): 86-94. https://doi.org/10.1007/s12274-019-2576-4
Topics:
Metrics & Citations  
Article History
Copyright
Return