AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Solid-solution alloy nanoclusters of the immiscible gold-rhodium system achieved by a solid ligand-assisted approach for highly efficient catalysis

Xinchun Yang1,2Zhangpeng Li1Mitsunori Kitta1Nobuko Tsumori3Wenhan Guo4Zitao Zhang4Jianbo Zhang5Ruqiang Zou4( )Qiang Xu1,2,6( )
Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka 563-8577, Japan
Graduate School of Engineering, Kobe University, Nada Ku, Kobe, Hyogo 657-8501, Japan
Department of Applied Chemistry and Chemical Engineering, Toyama National College of Technology, Toyama 939-8630, Japan
Department of Materials Science and Engineering, Peking University, Beijing 100871, China
Centre for High-Pressure Science and Technology Advanced Research, Beijing 100094, China
AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
Show Author Information

Graphical Abstract

Abstract

Striking effects are expected in solid-solution alloying, which offers enormous possibilities for various applications, especially in industrial catalysis. However, phase diagrams have revealed that a wide range of metallic elements are immiscible with each other even above their melting points. Achieving such unknown alloying between different immiscible metallic elements is highly desirable but challenging. Here, for the first time, by using an innovative solid ligand-assisted approach, we achieve the solid-solution alloying between the bulk-immiscible Au and Rh in plenty of clean, ultrafine (~ 1.6 nm) and highly dispersed nanoclusters. The solid-solution alloying of immiscible Au and Rh significantly enhances their catalytic performance toward the hydrogen evolution from formic acid in contrast to the monometallic Au and Rh nanoclusters. Moreover, the resultant binary solid-solution nanoclusters are stable without any segregation during catalytic reactions. The approach demonstrated here for homogeneously mixing the immiscible metals at the atomic scale will benefit the creation of advanced alloys and their catalytic applications in future.

Electronic Supplementary Material

Download File(s)
12274_2019_2579_MOESM1_ESM.pdf (8.2 MB)

References

[1]
Buchwalter, P.; Rosé, J.; Braunstein, P. Multimetallic catalysis based on heterometallic complexes and clusters. Chem. Rev. 2015, 115, 28-126.
[2]
Zhu, D. D.; Liu, J. L.; Qiao, S. Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv. Mater. 2016, 28, 3423-3452.
[3]
Fan, Z. X.; Zhang, H. Template synthesis of noble metal nanocrystals with unusual crystal structures and their catalytic applications. Acc. Chem. Res. 2016, 49, 2841-2850.
[4]
Zhao, X. J.; Dai, L.; Qin, Q.; Pei, F.; Hu, C. Y.; Zheng, N. F. Self-supported 3D PdCu alloy nanosheets as a bifunctional catalyst for electrochemical reforming of ethanol. Small 2017, 13, 1602970.
[5]
Xu, L.; Liang, H. W.; Yang, Y.; Yu, S. H. Stability and reactivity: Positive and negative aspects for nanoparticle processing. Chem. Rev. 2018, 118, 3209-3250.
[6]
Yang, X. C.; Xu, Q. Gold-containing metal nanoparticles for catalytic hydrogen generation from liquid chemical hydrides. Chin. J. Catal. 2016, 37, 1594-1599.
[7]
Kumar, A.; Yang, X. C.; Xu, Q. Ultrafine bimetallic Pt-Ni nanoparticles immobilized on 3-dimensional N-doped graphene networks: A highly efficient catalyst for dehydrogenation of hydrous hydrazine. J. Mater. Chem. A 2019, 7, 112-115.
[8]
Yang, X. C.; Pachfule, P.; Chen, Y.; Tsumori, N.; Xu, Q. Highly efficient hydrogen generation from formic acid using a reduced graphene oxide-supported AuPd nanoparticle catalyst. Chem. Commun. 2016, 52, 4171-4174.
[9]
Christensen, A.; Stoltze, P.; Norskov, J. K. Size dependence of phase separation in small bimetallic clusters. J. Phys.: Condens. Matter 1995, 7, 1047-1057.
[10]
Essinger-Hileman, E. R.; DeCicco, D.; Bondi, J. F.; Schaak, R. E. Aqueous room-temperature synthesis of Au-Rh, Au-Pt, Pt-Rh, and Pd-Rh alloy nanoparticles: Fully tunable compositions within the miscibility gaps. J. Mater. Chem. 2011, 21, 11599-11604.
[11]
García, S.; Zhang, L.; Piburn, G. W.; Henkelman, G.; Humphrey, S. M. Microwave synthesis of classically immiscible rhodium-silver and rhodium-gold alloy nanoparticles: Highly active hydrogenation catalysts. ACS Nano 2014, 8, 11512-11521.
[12]
Chen, L. Y.; Chen, X. D.; Liu, H. L.; Li, Y. W. Encapsulation of mono- or bimetal nanoparticles inside metal-organic frameworks via in situ incorporation of metal precursors. Small 2015, 11, 2642-2648.
[13]
Zhang, Q.; Kusada, K.; Wu, D. S.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Kawaguchi, S.; Kubota, Y.; Kitagawa, H. Selective control of fcc and hcp crystal structures in Au-Ru solid-solution alloy nanoparticles. Nat. Commun. 2018, 9, 510.
[14]
Liu, H. L.; Chang, L. N.; Bai, C. H.; Chen, L. Y.; Luque, R.; Li, Y. W. Controllable encapsulation of “clean” metal clusters within MOFs through kinetic modulation: Towards advanced heterogeneous nanocatalysts. Angew. Chem., Int. Ed. 2016, 55, 5019-5023.
[15]
Liu, B.; Yao, H. Q.; Song, W. Q.; Jin, L.; Mosa, I. M.; Rusling, J. F.; Suib, S. L.; He, J. Ligand-free noble metal nanocluster catalysts on carbon supports via “soft” nitriding. J. Am. Chem. Soc. 2016, 138, 4718-4721.
[16]
Gao, W. B.; Wang, P. K.; Guo, J. P.; Chang, F.; He, T.; Wang, Q. R.; Wu, G. T.; Chen, P. Barium hydride-mediated nitrogen transfer and hydrogenation for ammonia synthesis: A case study of cobalt. ACS Catal. 2017, 7, 3654-3661.
[17]
Yang, X. C.; Sun, J. K.; Kitta, M.; Pang, H.; Xu, Q. Encapsulating highly catalytically active metal nanoclusters inside porous organic cages. Nat. Catal. 2018, 1, 214-220.
[18]
Liu, G. Y.; Sheng, Y.; Ager, J. W.; Kraft, M.; Xu, R. Research advances towards large-scale solar hydrogen production from water. EnergyChem 2019, 1, 100014.
[19]
Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Li, L. H.; Han, Y.; Chen, Y.; Du, A. J.; Jaroniec, M.; Qiao, S. Z. Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 2014, 5, 3783.
[20]
Kohl, M.; Borrmann, F.; Althues, H.; Kaskel, S. Hard carbon anodes and novel electrolytes for long-cycle-life room temperature sodium-sulfur full cell batteries. Adv. Energy Mater. 2016, 6, 1502185.
[21]
Hou, Y.; Qiu, M.; Zhang, T.; Ma, J.; Liu, S. H.; Zhuang, X. D.; Yuan, C.; Feng, X. L. Efficient electrochemical and photoelectrochemical water splitting by a 3D nanostructured carbon supported on flexible exfoliated graphene foil. Adv. Mater. 2017, 29, 1604480.
[22]
Pachfule, P.; Yang, X. C.; Zhu, Q. L.; Tsumori, N.; Uchida, T.; Xu, Q. From Ru nanoparticle-encapsulated metal-organic frameworks to highly catalytically active Cu/Ru nanoparticle-embedded porous carbon. J. Mater. Chem. A 2017, 5, 4835-4841.
[23]
He, L.; Weniger, F.; Neumann, H.; Beller, M. Synthesis, characterization, and application of metal nanoparticles supported on nitrogen-doped carbon: Catalysis beyond electrochemistry. Angew. Chem., Int. Ed. 2016, 55, 12582-12594.
[24]
Zhong, S.; Kitta, M.; Xu, Q. Hierarchically porous carbons derived from metal-organic framework/chitosan composites for high-performance supercapacitors. Chem. Asian J. 2019, 14, 3583-3589.
[25]
Lu, L. L.; Wu, B. Y.; Shi, W.; Chen, P. Metal-organic framework-derived heterojunctions as nanocatalysts for photocatalytic hydrogen production. Inorg. Chem. Front., in press, .
[26]
Huang, J. H.; Akita, T.; Faye, J.; Fujitani, T.; Takei, T.; Haruta, M. Propene epoxidation with dioxygen catalyzed by gold clusters. Angew. Chem., Int. Ed. 2009, 48, 7862-7866.
[27]
Zhong, R. Y.; Sun, K. Q.; Hong, Y. C.; Xu, B. Q. Impacts of organic stabilizers on catalysis of Au nanoparticles from colloidal preparation. ACS Catal. 2014, 4, 3982-3993.
[28]
Sun, J. K.; Zhan, W. W.; Akita, T.; Xu, Q. Toward homogenization of heterogeneous metal nanoparticle catalysts with enhanced catalytic performance: Soluble porous organic cage as a stabilizer and homogenizer. J. Am. Chem. Soc. 2015, 137, 7063-7066.
[29]
Okamoto, H.; Massalski, T. B. The Au-Rh (gold-rhodium) system. Bull. Alloy Phase Diagrams 1984, 5, 384-387.
[30]
Richardson, M. J.; Johnston, J. H. Sorption and binding of nanocrystalline gold by Merino wool fibres—An XPS study. J. Colloid Interface Sci. 2007, 310, 425-430.
[31]
Arrigo, R.; Hävecker, M.; Wrabetz, S.; Blume, R.; Lerch, M.; McGregor, J.; Parrott, E. P. J.; Zeitler, J. A.; Gladden, L. F.; Knop-Gericke, A. et al. Tuning the acid/base properties of nanocarbons by functionalization via amination. J. Am. Chem. Soc. 2010, 132, 9616-9630.
[32]
Wong, A.; Liu, Q.; Griffin, S.; Nicholls, A.; Regalbuto, J. R. Synthesis of ultrasmall, homogeneously alloyed, bimetallic nanoparticles on silica supports. Science 2017, 358, 1427-1430.
[33]
Moret, S.; Dyson, P. J.; Laurenczy, G. Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media. Nat. Commun. 2014, 5, 4017.
[34]
Wang, W. H.; Ertem, M. Z.; Xu, S. A.; Onishi, N.; Manaka, Y.; Suna, Y.; Kambayashi, H.; Muckerman, J. T.; Fujita, E.; Himeda, Y. Highly robust hydrogen generation by bioinspired Ir complexes for dehydrogenation of formic acid in water: Experimental and theoretical mechanistic investigations at different pH. ACS Catal. 2015, 5, 5496-5504.
[35]
Mellmann, D.; Sponholz, P.; Junge, H.; Beller, M. Formic acid as a hydrogen storage material-development of homogeneous catalysts for selective hydrogen release. Chem. Soc. Rev. 2016, 45, 3854-3988.
[36]
Sun, Q. M.; Wang, N.; Bing, Q. M.; Si, R.; Liu, J. Y.; Bai, R. S.; Zhang, P.; Jia, M. J.; Yu, J. H. Subnanometric hybrid Pd-M(OH)2, M = Ni, Co, clusters in zeolites as highly efficient nanocatalysts for hydrogen generation. Chem 2017, 3, 477-493.
[37]
Li, Z. P.; Xu, Q. Metal-nanoparticle-catalyzed hydrogen generation from formic acid. Acc. Chem. Res. 2017, 50, 1449-1458.
[38]
Sordakis, K.; Tang, C. H.; Vogt, L. K.; Junge, H.; Dyson, P. J.; Beller, M.; Laurenczy, G. Homogeneous catalysis for sustainable hydrogen storage in formic acid and alcohols. Chem. Rev. 2018, 118, 372-433.
[39]
Mori, K.; Sano, T.; Kobayashi, H.; Yamashita, H. Surface engineering of a supported PdAg catalyst for hydrogenation of CO2 to formic acid: Elucidating the active Pd atoms in alloy nanoparticles. J. Am. Chem. Soc. 2018, 140, 8902-8909.
[40]
Hong, C. B.; Zhu, D. J.; Ma, D. D.; Wu, X. T.; Zhu, Q. L. An effective amino acid-assisted growth of ultrafine palladium nanocatalysts toward superior synergistic catalysis for hydrogen generation from formic acid. Inorg. Chem. Front. 2019, 6, 975-981.
[41]
Li, S. J.; Zhou, Y. T.; Kang, X.; Liu, D. X.; Gu, L.; Zhang, Q. H.; Yan, J. M.; Jiang, Q. A simple and effective principle for a rational design of heterogeneous catalysts for dehydrogenation of formic acid. Adv. Mater. 2019, 31, 1806781.
[42]
Madon, R. J.; Boudart, M. Experimental criterion for the absence of artifacts in the measurement of rates of heterogeneous catalytic reactions. Ind. Eng. Chem. Fundamen. 1982, 21, 438-447.
[43]
Singh, U. K.; Vannice, M. A. Kinetic and thermodynamic analysis of liquid-phase benzene hydrogenation. AIChE J. 1999, 45, 1059-1071.
[44]
Schaber, P. M.; Colson, J; Higgins, S.; Thielen, D.; Anspach, B.; Brauer, J. Thermal decomposition (pyrolysis) of urea in an open reaction vessel. Thermochim. Acta 2004, 424, 131-142.
Nano Research
Pages 105-111
Cite this article:
Yang X, Li Z, Kitta M, et al. Solid-solution alloy nanoclusters of the immiscible gold-rhodium system achieved by a solid ligand-assisted approach for highly efficient catalysis. Nano Research, 2020, 13(1): 105-111. https://doi.org/10.1007/s12274-019-2579-1
Topics:

741

Views

28

Crossref

N/A

Web of Science

27

Scopus

0

CSCD

Altmetrics

Received: 30 October 2019
Revised: 21 November 2019
Accepted: 22 November 2019
Published: 06 December 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return