AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Nano-enabled cellular engineering for bioelectric studies

Jiuyun Shi1Clementene Clayton1Bozhi Tian1,2,3( )
Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
The Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
Show Author Information

Graphical Abstract

Abstract

Engineered cells have opened up a new avenue for scientists and engineers to achieve specialized biological functions. Nanomaterials, such as silicon nanowires and quantum dots, can establish tight interfaces with cells either extra-or intracellularly, and they have already been widely used to control cellular functions. The future exploration of nanomaterials in cellular engineering may reveal numerous opportunities in both fundamental bioelectric studies and clinic applications. In this review, we highlight several nanomaterials-enabled non-genetic approaches to fabricating engineered cells. First, we briefly review the latest progress in engineered or synthetic cells, such as protocells that create cell-like behaviors from nonliving building blocks, and cells made by genetic or chemical modifications. Next, we illustrate the need for non-genetic cellular engineering with semiconductors and present some examples where chemical synthesis yields complex morphology or functions needed for biointerfaces. We then provide discussions in detail about the semiconductor nanostructure-enabled neural, cardiac, and microbial modulations. We also suggest the need to integrate tissue engineering with semiconductor devices to carry out more complex functions. We end this review by providing our perspectives for future development in non-genetic cellular engineering.

References

[1]
Kim, S.; Shah, S. B.; Graney, P. L.; Singh, A. Multiscale engineering of immune cells and lymphoid organs. Nat. Rev. Mater .2019, 4, 355-378.
[2]
Xie, M. Q.; Fussenegger, M. Designing cell function: Assembly of synthetic gene circuits for cell biology applications. Nat. Rev. Mol. Cell Biol .2018, 19, 507-525.
[3]
Tian, B. Z. Nongenetic neural control with light. Science 2019, 365, 457.
[4]
Wu, M. R.; Jusiak, B.; Lu, T. K. Engineering advanced cancer therapies with synthetic biology. Nat. Rev. Cancer 2019, 19, 187-195.
[5]
Smanski, M. J.; Zhou, H.; Claesen, J.; Shen, B.; Fischbach, M. A.; Voigt, C. A. Synthetic biology to access and expand nature's chemical diversity. Nat. Rev. Microbiol .2016, 14, 135-149.
[6]
Fadel, T. R.; Steenblock, E. R.; Stern, E.; Li, N.; Wang, X. M.; Haller, G. L.; Pfefferle, L. D.; Fahmy, T. M. Enhanced cellular activation with single walled carbon nanotube bundles presenting antibody stimuli. Nano Lett .2008, 8, 2070-2076.
[7]
Fadel, T. R.; Sharp, F. A.; Vudattu, N.; Ragheb, R.; Garyu, J.; Kim, D.; Hong, E. P.; Li, N.; Haller, G. L.; Pfefferle, L. D. et al. A carbon nanotube-polymer composite for T-cell therapy. Nat. Nanotechnol .2014, 9, 639-647.
[8]
Perica, K.; Bieler, J. G.; Schütz, C.; Varela, J. C.; Douglass, J.; Skora, A.; Chiu, Y. L.; Oelke, M.; Kinzler, K.; Zhou, S. B. et al. Enrichment and expansion with nanoscale artificial antigen presenting cells for adoptive immunotherapy. Acs Nano 2015, 9, 6861-6871.
[9]
Cheung, A. S.; Zhang, D. K. Y.; Koshy, S. T.; Mooney, D. J. Scaffolds that mimic antigen-presenting cells enable ex vivo expansion of primary T cells. Nat. Biotechnol .2018, 36, 160-169.
[10]
Stephan, S. B.; Taber, A. M.; Jileaeva, I.; Pegues, E. P.; Sentman, C. L.; Stephan, M. T. Biopolymer implants enhance the efficacy of adoptive T-cell therapy. Nat. Biotechnol .2015, 33, 97-101.
[11]
Jiang, Y. W.; Tian, B. Z. Inorganic semiconductor biointerfaces. Nat. Rev. Mater .2018, 3, 473-490.
[12]
Li, Y.; Qian, F.; Xiang, J.; Lieber, C. M. Nanowire electronic and optoelectronic devices. Mater. Today 2006, 9, 18-27.
[13]
Ek, M.; Filler, M. A. Atomic-scale choreography of vapor-liquid-solid nanowire growth. Acc. Chem. Res .2018, 51, 118-126.
[14]
Tian, B. Z.; Lieber, C. M. Nanowired bioelectric interfaces. Chem. Rev .2019, 119, 9136-9152.
[15]
Tian, B. Z.; Cohen-Karni, T.; Qing, Q.; Duan, X. J.; Xie, P.; Lieber, C. M. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 2010, 329, 830-834.
[16]
Tian, B. Z.; Liu, J.; Dvir, T.; Jin, L. H.; Tsui, J. H.; Qing, Q.; Suo, Z. G.; Langer, R.; Kohane, D. S.; Lieber, C. M. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater .2012, 11, 986-994.
[17]
Qing, Q.; Pal, S. K.; Tian, B. Z.; Duan, X. J.; Timko, B. P.; Cohen-Karni, T.; Murthy, V. N.; Lieber, C. M. Nanowire transistor arrays for mapping neural circuits in acute brain slices. Proc Natl Acad Sci USA 2010, 107, 1882-1887.
[18]
Liu, J.; Fu, T. M.; Cheng, Z. G.; Hong, G. S.; Zhou, T.; Jin, L. H.; Duvvuri, M.; Jiang, Z.; Kruskal, P.; Xie, C. et al. Syringe-injectable electronics. Nat. Nanotechnol .2015, 10, 629-636.
[19]
Chen, R.; Canales, A.; Anikeeva, P. Neural recording and modulation technologies. Nat. Rev. Mater .2017, 2, 16093.
[20]
Rao, S. Y.; Chen, R.; LaRocca, A. A.; Christiansen, M. G.; Senko, A. W.; Shi, C. H.; Chiang, P. H.; Varnavides, G.; Xue, J.; Zhou, Y. et al. Remotely controlled chemomagnetic modulation of targeted neural circuits. Nat. Nanotechnol .2019, 14, 967-973.
[21]
Jiang, Y. W.; Carvalho-de-Souza, J. L.; Wong, R. C. S.; Luo, Z. Q.; Isheim, D.; Zuo, X. B.; Nicholls, A. W.; Jung, I. W.; Yue, J. P.; Liu, D. J. et al. Heterogeneous silicon mesostructures for lipid-supported bioelectric interfaces. Nat. Mater .2016, 15, 1023-1030.
[22]
Jiang, Y. W.; Li, X. J.; Liu, B.; Yi, J.; Fang, Y.; Shi, F. Y.; Gao, X.; Sudzilovsky, E.; Parameswaran, R.; Koehler, K. et al. Rational design of silicon structures for optically controlled multiscale biointerfaces. Nat. Biomed. Eng .2018, 2, 508-521.
[23]
Acarón Ledesma, H.; Li, X. J.; Carvalho-de-Souza, J. L.; Wei, W.; Bezanilla, F.; Tian, B. Z. An atlas of nano-enabled neural interfaces. Nat. Nanotechnol .2019, 14, 645-657.
[24]
Parameswaran, R.; Koehler, K.; Rotenberg, M. Y.; Burke, M. J.; Kim, J.; Jeong, K. Y.; Hissa, B.; Paul, M. D.; Moreno, K.; Sarma, N. et al. Optical stimulation of cardiac cells with a polymer-supported silicon nanowire matrix. Proc Natl Acad Sci USA 2019, 116, 413-421.
[25]
Rotenberg, M. Y.; Yamamoto, N.; Schaumann, E. N.; Matino, L.; Santoro, F.; Tian, B. Z. Living myofibroblast-silicon composites for probing electrical coupling in cardiac systems. Proc Natl Acad Sci USA 2019, 116, 22531-22539.
[26]
Feiner, R.; Dvir, T. Tissue-electronics interfaces: From implantable devices to engineered tissues. Nat. Rev. Mater .2018, 3, 17076.
[27]
Patel, S. R.; Lieber, C. M. Precision electronic medicine in the brain. Nat. Biotechnol .2019, 37, 1007-1012.
[28]
Hong, G. S.; Lieber, C. M. Novel electrode technologies for neural recordings. Nat. Rev. Neurosci .2019, 20, 376.
[29]
Xu, C.; Hu, S.; Chen, X. Y. Artificial cells: From basic science to applications. Mater. Today 2016, 19, 516-532.
[30]
Kitada, T.; DiAndreth, B.; Teague, B.; Weiss, R. Programming gene and engineered-cell therapies with synthetic biology. Science 2018, 359, eaad1067.
[31]
Dzieciol, A. J.; Mann, S. Designs for life: Protocell models in the laboratory. Chem. Soc. Rev .2012, 41, 79-85.
[32]
Li, M.; Huang, X.; Tang, T. Y. D.; Mann, S. Synthetic cellularity based on non-lipid micro-compartments and protocell models. Curr. Opin. Chem. Biol .2014, 22, 1-11.
[33]
Rasmussen, S.; Bedau, M. A.; Chen, L.; Deamer, D.; Krakauer, D. C.; Packard, N. H.; Stadler, P.F. Protocells: Bridging Nonliving and Living Matter; MIT Press, Cambridge, 2009.
[34]
Li, M.; Harbron, R. L.; Weaver, J. V. M.; Binks, B. P.; Mann, S. Electrostatically gated membrane permeability in inorganic protocells. Nat. Chem .2013, 5, 529-536.
[35]
Kumar, B. V. V. S. P.; Patil, A. J.; Mann, S. Enzyme-powered motility in buoyant organoclay/DNA protocells. Nat. Chem .2018, 10, 1154-1163.
[36]
Gobbo, P.; Patil, A. J.; Li, M.; Harniman, R.; Briscoe, W. H.; Mann, S. Programmed assembly of synthetic protocells into thermoresponsive prototissues. Nat. Mater .2018, 17, 1145-1153.
[37]
Noireaux, V.; Libchaber, A. A vesicle bioreactor as a step toward an artificial cell assembly. Proc Natl Acad Sci USA 2004, 101, 17669-17674.
[38]
Taylor, J. W.; Eghtesadi, S. A.; Points, L. J.; Liu, T.; Cronin, L. Autonomous model protocell division driven by molecular replication. Nat. Commun .2017, 8, 237.
[39]
Chen, Z. W.; Wang, J. Q.; Sun, W. J.; Archibong, E.; Kahkoska, A. R.; Zhang, X. D.; Lu, Y.; Ligler, F. S.; Buse, J. B.; Gu, Z. Synthetic beta cells for fusion-mediated dynamic insulin secretion. Nat. Chem. Biol .2018, 14, 86-93.
[40]
Lim, W. A.; June, C. H. The principles of engineering immune cells to treat cancer. Cell 2017, 168, 724-740.
[41]
Salatin, S.; Dizaj, S. M.; Khosroushahi, A. Y. Effect of the surface modification, size, and shape on cellular uptake of nanoparticles. Cell Biol. Int .2015, 39, 881-890.
[42]
Niu, J.; Lunn, D. J.; Pusuluri, A.; Yoo, J. I.; O'Malley, M. A.; Mitragotri, S.; Soh, H. T.; Hawker, C. J. Engineering live cell surfaces with functional polymers via cytocompatible controlled radical polymerization. Nat. Chem .2017, 9, 537-545.
[43]
Komor, A. C.; Kim, Y. B.; Packer, M. S.; Zuris, J. A.; Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016, 533, 420-424.
[44]
Gaudelli, N. M.; Komor, A. C.; Rees, H. A.; Packer, M. S.; Badran, A. H.; Bryson, D. I.; Liu, D. R. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 2017, 551, 464-471.
[45]
Xu, X. X.; Tao, Y. H.; Gao, X. B.; Zhang, L.; Li, X. F.; Zou, W. G.; Ruan, K. C.; Wang, F.; Xu, G. L.; Hu, R. G. A CRISPR-based approach for targeted DNA demethylation. Cell Discov .2016, 2, 16009.
[46]
Morita, S.; Noguchi, H.; Horii, T.; Nakabayashi, K.; Kimura, M.; Okamura, K.; Sakai, A.; Nakashima, H.; Hata, K.; Nakashima, K. et al. Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions. Nat. Biotechnol .2016, 34, 1060-1065.
[47]
Tabebordbar, M.; Zhu, K. X.; Cheng, J. K. W.; Chew, W. L.; Widrick, J. J.; Yan, W. X.; Maesner, C.; Wu, E. Y.; Xiao, R.; Ran, F. A. et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 2016, 351, 407-411.
[48]
Boyden, E. S.; Zhang, F.; Bamberg, E.; Nagel, G.; Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci .2005, 8, 1263-1268.
[49]
Nagel, G.; Szellas, T.; Huhn, W.; Kateriya, S.; Adeishvili, N.; Berthold, P.; Ollig, D.; Hegemann, P.; Bamberg, E. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci USA 2003, 100, 13940-13945.
[50]
Zhang, F.; Vierock, J.; Yizhar, O.; Fenno, L. E.; Tsunoda, S.; Kianianmomeni, A.; Prigge, M.; Berndt, A.; Cushman, J.; Polle, J. et al. The microbial opsin family of optogenetic tools. Cell 2011, 147, 1446-1457.
[51]
Zhang, F.; Wang, L. P.; Brauner, M.; Liewald, J. F.; Kay, K.; Watzke, N.; Wood, P. G.; Bamberg, E.; Nagel, G. et al. Multimodal fast optical interrogation of neural circuitry. Nature 2007, 446, 633-639.
[52]
Kato, H. E.; Kim, Y. S.; Paggi, J. M.; Evans, K. E.; Allen, W. E.; Richardson, C.; Inoue, K.; Ito, S.; Ramakrishnan, C.; Fenno, L. E. et al. Structural mechanisms of selectivity and gating in anion channelrhodopsins. Nature 2018, 561, 349-354.
[53]
Allen, W. E.; Chen, M. Z.; Pichamoorthy, N.; Tien, R. H.; Pachitariu, M.; Luo, L. Q.; Deisseroth, K. Thirst regulates motivated behavior through modulation of brainwide neural population dynamics. Science 2019, 364, eaav3932.
[54]
Kaplan, L.; Ierokomos, A.; Chowdary, P.; Bryant, Z.; Cui, B. X. Rotation of endosomes demonstrates coordination of molecular motors during axonal transport. Sci. Adv .2018, 4, e1602170.
[55]
van Bergeijk, P.; Adrian, M.; Hoogenraad, C. C.; Kapitein, L. C. Optogenetic control of organelle transport and positioning. Nature 2015, 518, 111-114.
[56]
Mimee, M.; Nadeau, P.; Hayward, A.; Carim, S.; Flanagan, S.; Jerger, L.; Collins, J.; McDonnell, S.; Swartwout, R.; Citorik, R. J. et al. An ingestible bacterial-electronic system to monitor gastrointestinal health. Science 2018, 360, 915-918.
[57]
Zhang, A. Q.; Lieber, C. M. Nano-bioelectronics. Chem. Rev .2016, 116, 215-257.
[58]
Christesen, J. D.; Pinion, C. W.; Grumstrup, E. M.; Papanikolas, J. M.; Cahoon, J. F. Synthetically encoding 10 nm morphology in silicon nanowires. Nano Lett .2013, 13, 6281-6286.
[59]
Tian, B. Z.; Xie, P.; Kempa, T. J.; Bell, D. C.; Lieber, C. M. Single-crystalline kinked semiconductor nanowire superstructures. Nat. Nanotechnol .2009, 4, 824-829.
[60]
Gabriel, M. M.; Kirschbrown, J. R.; Christesen, J. D.; Pinion, C. W.; Zigler, D. F.; Grumstrup, E. M.; Mehl, B. P.; Cating, E. E.; Cahoon, J. F.; Papanikolas, J. M. Direct imaging of free carrier and trap carrier motion in silicon nanowires by spatially-separated femtosecond pump-probe microscopy. Nano Lett .2013, 13, 1336-1340.
[61]
Pinion, C. W.; Nenon, D. P.; Christesen, J. D.; Cahoon, J. F. Identifying crystallization- and incorporation-limited regimes during vapor-liquid-solid growth of Si nanowires. Acs Nano 2014, 8, 6081-6088.
[62]
Kim, S.; Hill, D. J.; Pinion, C. W.; Christesen, J. D.; McBride, J. R.; Cahoon, J. F. Designing morphology in epitaxial silicon nanowires: The role of gold, surface chemistry, and phosphorus doping. Acs Nano 2017, 11, 4453-4462.
[63]
Luo, Z. Q.; Jiang, Y. W.; Myers, B. D.; Isheim, D.; Wu, J. S.; Zimmerman, J. F.; Wang, Z. G.; Li, Q. Q.; Wang, Y. C.; Chen, X. Q. et al. Atomic gold-enabled three-dimensional lithography for silicon mesostructures. Science 2015, 348, 1451-1455.
[64]
Fang, Y.; Jiang, Y. W.; Cherukara, M. J.; Shi, F. Y.; Koehler, K.; Freyermuth, G.; Isheim, D.; Narayanan, B.; Nicholls, A. W.; Seidman, D. N.; Sankaranarayanan, S. K. R. S.; Tian, B. Z. Alloy-assisted deposition of three-dimensional arrays of atomic gold catalyst for crystal growth studies. Nature Communications 2017, 8, 2014.
[65]
Fang, Y.; Jiang, Y. W.; Ledesma, H. A.; Yi, J.; Gao, X.; Weiss, D. E.; Shi, F. Y.; Tian, B. Z. Texturing silicon nanowires for highly localized optical modulation of cellular dynamics. Nano Lett .2018, 18, 4487-4492.
[66]
Parameswaran, R.; Carvalho-de-Souza, J. L.; Jiang, Y. W.; Burke, M. J.; Zimmerman, J. F.; Koehler, K.; Phillips, A. W.; Yi, J.; Adams, E. J.; Bezanilla, F. et al. Photoelectrochemical modulation of neuronal activity with free-standing coaxial silicon nanowires. Nat. Nanotechnol .2018, 13, 260-266.
[67]
Tian, B. Z.; Zheng, X. L.; Kempa, T. J.; Fang, Y.; Yu, N. F.; Yu, G. H.; Huang, J. L.; Lieber, C. M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007, 449, 885-889.
[68]
Liu, C.; Kong, D. S.; Hsu, P. C.; Yuan, H. T.; Lee, H. W.; Liu, Y. Y.; Wang, H. T.; Wang, S.; Yan, K.; Lin, D. C. et al. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light. Nat. Nanotechnol .2016, 11, 1098-1104.
[69]
Park, J. H.; Gu, L.; von Maltzahn, G.; Ruoslahti, E.; Bhatia, S. N.; Sailor, M. J. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat. Mater .2009, 8, 331-336.
[70]
Nandagopal, N.; Elowitz, M. B. Synthetic biology: Integrated gene circuits. Science 2011, 333, 1244-1248.
[71]
Slusarczyk, A. L.; Lin, A.; Weiss, R. Foundations for the design and implementation of synthetic genetic circuits. Nat. Rev. Genet .2012, 13, 406-420.
[72]
Wolpe, P. R.; Rommelfanger, K. S. & the Drafting and Reviewing Delegates of the BEINGS Working Groups. Ethical principles for the use of human cellular biotechnologies. Nat. Biotechnol .2017, 35, 1050-1058.
[73]
Marino, A.; Arai, S.; Hou, Y. Y.; Sinibaldi, E.; Pellegrino, M.; Chang, Y. T.; Mazzolai, B.; Mattoli, V.; Suzuki, M.; Ciofani, G. Piezoelectric nanoparticle-assisted wireless neuronal stimulation. Acs Nano 2015, 9, 7678-7689.
[74]
Chen, R.; Romero, G.; Christiansen, M. G.; Mohr, A.; Anikeeva, P. Wireless magnetothermal deep brain stimulation. Science 2015, 347, 1477-1480.
[75]
Huang, H.; Delikanli, S.; Zeng, H.; Ferkey, D. M.; Pralle, A. Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat. Nanotechnol .2010, 5, 602-606.
[76]
Kandel, E. R.; Schwartz, J. H.; Jessell, T. M. Principles of Neural Science; 4th ed.; McGraw-hill: New York, 2000.
[77]
Fu, T. M.; Hong, G. S.; Zhou, T.; Schuhmann, T. G.; Viveros, R. D.; Lieber, C. M. Stable long-term chronic brain mapping at the singleneuron level. Nat. Methods 2016, 13, 875-882.
[78]
Canales, A.; Jia, X. T.; Froriep, U. P.; Koppes, R. A.; Tringides, C. M.; Selvidge, J.; Lu, C.; Hou, C.; Wei, L.; Fink, Y. et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol .2015, 33, 277-284.
[79]
Zhang, Z.; Yates, J. T.Jr. Band bending in semiconductors: Chemical and physical consequences at surfaces and interfaces. Chem. Rev .2012, 112, 5520-5551.
[80]
Carvalho-de-Souza, J. L.; Treger, J. S.; Dang, B.; Kent, S. B. H.; Pepperberg, D. R.; Bezanilla, F. Photosensitivity of neurons enabled by cell-targeted gold nanoparticles. Neuron 2015, 86, 207-217.
[81]
Khodagholy, D.; Gelinas, J. N.; Thesen, T.; Doyle, W.; Devinsky, O.; Malliaras, G. G.; Buzsáki, G. NeuroGrid: Recording action potentials from the surface of the brain. Nat. Neurosci .2015, 18, 310-315.
[82]
Tortiglione, C.; Antognazza, M. R.; Tino, A.; Bossio, C.; Marchesano, V.; Bauduin, A.; Zangoli, M.; Morata, S. V.; Lanzani, G. Semiconducting polymers are light nanotransducers in eyeless animals. Sci. Adv .2017, 3, e1601699.
[83]
Jakešová, M.; Ejneby, M. S.; Đerek, V.; Schmidt, T.; Gryszel, M.; Brask, J.; Schindl, R.; Simon, D. T.; Berggren, M.; Elinder, F. et al. Optoelectronic control of single cells using organic photocapacitors. Sci. Adv .2019, 5, eaav5265.
[84]
Rand, D.; Jakešová, M.; Lubin, G.; Vėbraitė, I.; David-Pur, M.; Đerek, V.; Cramer, T.; Sariciftci, N. S.; Hanein, Y.; Glowacki, E. D. Direct electrical neurostimulation with organic pigment photocapacitors. Adv. Mater .2018, 30, 1707292.
[85]
Sytnyk, M.; Jakešová, M.; Litviňuková, M.; Mashkov, O.; Kriegner, D.; Stangl, J.; Nebesářová, J.; Fecher, F. W.; Schöfberger, W.; Sariciftci, N. S. et al. Cellular interfaces with hydrogen-bonded organic semiconductor hierarchical nanocrystals. Nat. Commun .2017, 8, 91.
[86]
Nussinovitch, U.; Gepstein, L. Optogenetics for in vivo cardiac pacing and resynchronization therapies. Nat. Biotechnol .2015, 33, 750-754.
[87]
Jenkins, M. W.; Duke, A. R.; Gu, S.; Doughman, Y.; Chiel, H. J.; Fujioka, H.; Watanabe, M.; Jansen, E. D.; Rollins, A. M. Optical pacing of the embryonic heart. Nat. Photonics 2010, 4, 623-626.
[88]
Smith, N. I.; Kumamoto, Y.; Iwanaga, S.; Ando, J.; Fujita, K.; Kawata, S. A femtosecond laser pacemaker for heart muscle cells. Opt. Express 2008, 16, 8604-8616.
[89]
Jenkins, M. W.; Wang, Y. T.; Doughman, Y. Q.; Watanabe, M.; Cheng, Y.; Rollins, A. M. Optical pacing of the adult rabbit heart. Biomed. Opt. Express 2013, 4, 1626-1635.
[90]
Savchenko, A.; Cherkas, V.; Liu, C.; Braun, G. B.; Kleschevnikov, A.; Miller, Y. I.; Molokanova, E. Graphene biointerfaces for optical stimulation of cells. Sci. Adv .2018, 4, eaat0351.
[91]
Gentemann, L.; Kalies, S.; Coffee, M.; Meyer, H.; Ripken, T.; Heisterkamp, A.; Zweigerdt, R.; Heinemann, D. Modulation of cardiomyocyte activity using pulsed laser irradiated gold nanoparticles. Biomed. Opt. Express 2017, 8, 177-192.
[92]
Zhang, H.; Liu, H.; Tian, Z. Q.; Lu, D.; Yu, Y.; Cestellos-Blanco, S.; Sakimoto, K. K.; Yang, P. D. Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production. Nat. Nanotechnol .2018, 13, 900-905.
[93]
Ji, Z.; Zhang, H.; Liu, H.; Yaghi, O. M.; Yang, P. D. Cytoprotective metal-organic frameworks for anaerobic bacteria. Proc Natl Acad Sci USA 2018, 115, 10582-10587.
[94]
Liu, C.; Gallagher, J. J.; Sakimoto, K. K.; Nichols, E. M.; Chang, C. J.; Chang, M. C.; Yang, P. J. Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. Nano Lett .2015, 15, 3634-3639.
[95]
Sakimoto, K. K.; Wong, A. B.; Yang, P. D. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 2016, 351, 74-77.
[96]
Guo, J. L.; Suástegui, M.; Sakimoto, K. K.; Moody, V. M.; Xiao, G.; Nocera, D. G.; Joshi, N. S. Light-driven fine chemical production in yeast biohybrids. Science 2018, 362, 813-816.
[97]
Suástegui, M.; Ng, C. Y.; Chowdhury, A.; Sun, W.; Cao, M. F.; House, E.; Maranas, C. D.; Shao, Z. Y. Multilevel engineering of the upstream module of aromatic amino acid biosynthesis in Saccharomyces cerevisiae for high production of polymer and drug precursors. Metab. Eng .2017, 42, 134-144.
[98]
Dai, X. C.; Hong, G. S.; Gao, T.; Lieber, C. M. Mesh nanoelectronics: Seamless integration of electronics with tissues. Acc. Chem. Res .2018, 51, 309-318.
[99]
Hong, G. S.; Yang, X.; Zhou, T.; Lieber, C. M. Mesh electronics: A new paradigm for tissue-like brain probes. Curr. Opin. Neurobiol .2018, 50, 33-41.
[100]
Feiner, R.; Engel, L.; Fleischer, S.; Malki, M.; Gal, I.; Shapira, A.; Shacham-Diamand, Y.; Dvir, T. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function. Nat. Mater .2016, 15, 679-685.
[101]
Yang, X.; Zhou, T.; Zwang, T. J.; Hong, G. S.; Zhao, Y. L.; Viveros, R. D.; Fu, T. M.; Gao, T.; Lieber, C. M. Bioinspired neuron-like electronics. Nat. Mater .2019, 18, 510-517.
[102]
Xie, C.; Liu, J.; Fu, T. M.; Dai, X. C.; Zhou, W.; Lieber, C. M. Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes. Nat. Mater .2015, 14, 1286-1292.
[103]
Hong, G. S.; Fu, T. M.; Qiao, M.; Viveros, R. D.; Yang, X.; Zhou, T.; Lee, J. M.; Park, H. G.; Sanes, J. R.; Lieber, C. M. A method for single-neuron chronic recording from the retina in awake mice. Science 2018, 360, 1447-1451.
[104]
Kalmykov, A.; Huang, C. J.; Bliley, J.; Shiwarski, D.; Tashman, J.; Abdullah, A.; Rastogi, S. K.; Shukla, S.; Mataev, E.; Feinberg, A. W. et al. Organ-on-e-chip: Three-dimensional self-rolled biosensor array for electrical interrogations of human electrogenic spheroids. Sci. Adv .2019, 5, eaax0729.
[105]
Li, Q.; Nan, K. W.; Le Floch, P.; Lin, Z. W.; Sheng, H.; Blum, T. S.; Liu, J. Cyborg organoids: Implantation of nanoelectronics via organogenesis for tissue-wide electrophysiology. Nano Lett .2019, 19, 5781-5789.
Nano Research
Pages 1214-1227
Cite this article:
Shi J, Clayton C, Tian B. Nano-enabled cellular engineering for bioelectric studies. Nano Research, 2020, 13(5): 1214-1227. https://doi.org/10.1007/s12274-019-2580-8
Topics:

689

Views

11

Crossref

N/A

Web of Science

11

Scopus

2

CSCD

Altmetrics

Received: 30 October 2019
Accepted: 24 November 2019
Published: 21 December 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return