AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (27.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

High-performance transparent conducting films of long single-walled carbon nanotubes synthesized from toluene alone

Er-Xiong DingAqeel HussainSaeed AhmadQiang Zhang( )Yongping LiaoHua JiangEsko I. Kauppinen( )
Department of Applied Physics, School of Science, Aalto University, Puumiehenkuja 2, 00076 Aalto, Espoo, Finland
Show Author Information

Graphical Abstract

Abstract

Single-walled carbon nanotube (SWCNT) transparent conducting films (TCFs) are attracting increasing attention due to their exceptional optoelectronic properties. Toluene is a proposed carbon source for SWCNT synthesis, but the growth parameters of SWCNTs and their TCF optoelectronic performance (i.e., sheet resistance versus transmittance) have been insufficiently evaluated. Here, we have for the first time reported a systematic study of the fabrication of high-performance SWCNT TCFs using toluene alone as the carbon source. The mechanisms behind each observed phenomenon were elucidated using optical and microscopy techniques. By optimizing the growth parameters, high yields of SWCNT TCFs exhibiting a considerably low sheet resistance of 57 Ω/sq at 90% transmittance were obtained. This competitive optoelectronic performance is mainly attributable to long SWCNT bundles (mean length is 41.4 μm) in the film. Additionally, a chirality map determined by electron diffraction displays a bimodal distribution of chiral angles divided at 15°, which is close to both armchair and zigzag edges. Our study paved the way towards scaled-up production of SWCNTs for the fabrication of high-performance TCFs for industrial applications.

Electronic Supplementary Material

Download File(s)
12274_2019_2581_MOESM1_ESM.pdf (4.1 MB)

References

[1]
Sun, D. M.; Timmermans, M. Y.; Tian, Y.; Nasibulin, A. G.; Kauppinen, E. I.; Kishimoto, S.; Mizutani, T.; Ohno, Y. Flexible high-performance carbon nanotube integrated circuits. Nat. Nanotechnol. 2011, 6, 156-161.
[2]
Jeon, I.; Xiang, R.; Shawky, A.; Matsuo, Y.; Maruyama, S. Single-walled carbon nanotubes in emerging solar cells: Synthesis and electrode applications. Adv. Energy Mater. 2019, 9, 1801312.
[3]
Zhang, D. H.; Ryu, K.; Liu, X. L.; Polikarpov, E.; Ly, J.; Tompson, M. E.; Zhou, C. W. Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Lett. 2006, 6, 1880-1886.
[4]
Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C. K.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z. N. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 2011, 6, 788-792.
[5]
Yu, L. P.; Shearer, C.; Shapter, J. Recent development of carbon nanotube transparent conductive films. Chem. Rev. 2016, 116, 13413-13453.
[6]
Liao, Y. P.; Hussain, A.; Laiho, P.; Zhang, Q.; Tian, Y.; Wei, N.; Ding, E. X.; Khan, S. A.; Nguyen, N. N.; Ahmad, S. et al. Tuning geometry of SWCNTs by CO2 in floating catalyst CVD for high-performance transparent conductive films. Adv. Mater. Interfaces 2018, 5, 1801209.
[7]
Kaskela, A.; Nasibulin, A. G.; Timmermans, M. Y.; Aitchison, B.; Papadimitratos, A.; Tian, Y.; Zhu, Z.; Jiang, H.; Brown, D. P.; Zakhidov, A. et al. Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique. Nano Lett. 2010, 10, 4349-4355.
[8]
Reynaud, O.; Nasibulin, A. G.; Anisimov, A. S.; Anoshkin, I. V.; Jiang, H.; Kauppinen, E. I. Aerosol feeding of catalyst precursor for CNT synthesis and highly conductive and transparent film fabrication. Chem. Eng. J. 2014, 255, 134-140.
[9]
Kaskela, A.; Laiho, P.; Fukaya, N.; Mustonen, K.; Susi, T.; Jiang, H.; Houbenov, N.; Ohno, Y.; Kauppinen, E. I. Highly individual SWCNTs for high performance thin film electronics. Carbon 2016, 103, 228-234.
[10]
Ding, E. X.; Zhang, Q.; Wei, N.; Khan, A. T.; Kauppinen, E. I. High-performance single-walled carbon nanotube transparent conducting film fabricated by using low feeding rate of ethanol solution. Roy. Soc. Open Sci. 2018, 5, 180392.
[11]
Blackburn, J. L.; Barnes, T. M.; Beard, M. C.; Kim, Y. H.; Tenent, R. C.; McDonald, T. J.; To, B.; Coutts, T. J.; Heben, M. J. Transparent conductive single-walled carbon nanotube networks with precisely tunable ratios of semiconducting and metallic nanotubes. ACS Nano 2008, 2, 1266-1274.
[12]
Lee, J. W.; Jeon, I.; Lin, H. S.; Seo, S.; Han, T. H.; Anisimov, A.; Kauppinen, E. I.; Matsuo, Y.; Maruyama, S.; Yang, Y. Vapor-assisted ex-situ doping of carbon nanotube toward efficient and stable perovskite solar cells. Nano Lett. 2019, 19, 2223-2230.
[13]
Hussain, A.; Liao, Y. P.; Zhang, Q.; Ding, E. X.; Laiho, P.; Ahmad, S.; Wei, N.; Tian, Y.; Jiang, H.; Kauppinen, E. I. Floating catalyst CVD synthesis of single walled carbon nanotubes from ethylene for high performance transparent electrodes. Nanoscale 2018, 10, 9752-9759.
[14]
Saito, T.; Ohshima, S.; Okazaki, T.; Ohmori, S.; Yumura, M.; Iijima, S. Selective diameter control of single-walled carbon nanotubes in the gas-phase synthesis. J. Nanosci. Nanotechnol. 2008, 8, 6153-6157.
[15]
Paukner, C.; Koziol, K. K. K. Ultra-pure single wall carbon nanotube fibres continuously spun without promoter. Sci. Rep. 2014, 4, 3903.
[16]
Jiang, S.; Hou, P. X.; Chen, M. L.; Wang, B. W.; Sun, D. M.; Tang, D. M.; Jin, Q.; Guo, Q. X.; Zhang, D. D.; Du, J. H. et al. Ultrahigh-performance transparent conductive films of carbon-welded isolated single-wall carbon nanotubes. Sci. Adv. 2018, 4, eaap9264.
[17]
Ding, E. X.; Jiang, H.; Zhang, Q.; Tian, Y.; Laiho, P.; Hussain, A.; Liao, Y. P.; Wei, N.; Kauppinen, E. I. Highly conductive and transparent single-walled carbon nanotube thin films from ethanol by floating catalyst chemical vapor deposition. Nanoscale 2017, 9, 17601-17609.
[18]
Nasibulin, A. G.; Pikhitsa, P. V.; Jiang, H.; Kauppinen, E. I. Correlation between catalyst particle and single-walled carbon nanotube diameters. Carbon 2005, 43, 2251-2257.
[19]
Barnard, J. S.; Paukner, C.; Koziol, K. K. The role of carbon precursor on carbon nanotube chirality in floating catalyst chemical vapour deposition. Nanoscale 2016, 8, 17262-17270.
[20]
Sonoyama, N.; Ohshita, M.; Nijubu, A.; Nishikawa, H.; Yanase, H.; Hayashi, J. I.; Chiba, T. Synthesis of carbon nanotubes on carbon fibers by means of two-step thermochemical vapor deposition. Carbon 2006, 44, 1754-1761.
[21]
Reguero, V.; Alemán, B.; Mas, B.; Vilatela, J. J. Controlling carbon nanotube type in macroscopic fibers synthesized by the direct spinning process. Chem. Mater. 2014, 26, 3550-3557.
[22]
Hoecker, C.; Smail, F.; Pick, M.; Weller, L.; Boies, A. M. The dependence of CNT aerogel synthesis on sulfur-driven catalyst nucleation processes and a critical catalyst particle mass concentration. Sci. Rep. 2017, 7, 14519.
[23]
Gspann, T. S.; Smail, F. R.; Windle, A. H. Spinning of carbon nanotube fibres using the floating catalyst high temperature route: Purity issues and the critical role of sulphur. Faraday Discuss. 2014, 173, 47-65.
[24]
Wei, J. Q.; Zhu, H. W.; Jia, Y.; Shu, Q. K.; Li, C. G.; Wang, K. L.; Wei, B. Q.; Zhu, Y. Q.; Wang, Z. C.; Luo, J. B. et al. The effect of sulfur on the number of layers in a carbon nanotube. Carbon 2007, 45, 2152-2158.
[25]
Ren, W. C.; Li, F.; Bai, S.; Cheng, H. M. The effect of sulfur on the structure of carbon nanotubes produced by a floating catalyst method. J. Nanosci. Nanotechnol. 2006, 6, 1339-1345.
[26]
Lebedeva, I. V.; Knizhnik, A. A.; Gavrikov, A. V.; Baranov, A. E.; Potapkin, B. V.; Aceto, S. J.; Bui, P. A.; Eastman, C. M.; Grossner, U.; Smith, D. J. et al. First-principles based kinetic modeling of effect of hydrogen on growth of carbon nanotubes. Carbon 2011, 49, 2508-2521.
[27]
Ma, Y.; Dichiara, A. B.; He, D. L.; Zimmer, L.; Bai, J. B. Control of product nature and morphology by adjusting the hydrogen content in a continuous chemical vapor deposition process for carbon nanotube synthesis. Carbon 2016, 107, 171-179.
[28]
Wang, X. K.; Lin, X. W.; Dravid, V. P.; Ketterson, J. B.; Chang, R. P. H. Carbon nanotubes synthesized in a hydrogen arc discharge. Appl. Phys. Lett. 1995, 66, 2430-2432.
[29]
Liu, Q. F.; Ren, W. C.; Chen, Z. G.; Wang, D. W.; Liu, B. L.; Yu, B.; Li, F.; Cong, H. T.; Cheng, H. M. Diameter-selective growth of single-walled carbon nanotubes with high quality by floating catalyst method. ACS Nano 2008, 2, 1722-1728.
[30]
Barreiro, A.; Kramberger, C.; Rümmeli, M. H.; Grüneis, A.; Grimm, D.; Hampel, S.; Gemming, T.; Büchner, B.; Bachtold, A.; Pichler, T. Control of the single-wall carbon nanotube mean diameter in sulphur promoted aerosol-assisted chemical vapour deposition. Carbon 2007, 45, 55-61.
[31]
Miyata, Y.; Yanagi, K.; Maniwa, Y.; Kataura, H. Optical evaluation of the metal-to-semiconductor ratio of single-wall carbon nanotubes. J. Phys. Chem. C 2008, 112, 13187-13191.
[32]
Shin, D. W.; Lee, J. H.; Kim, Y. H.; Yu, S. M.; Park, S. Y.; Yoo, J. B. A role of HNO3 on transparent conducting film with single-walled carbon nanotubes. Nanotechnology 2009, 20, 475703.
[33]
Geng, H. Z.; Kim, K. K.; So, K. P.; Lee, Y. S.; Chang, Y.; Lee, Y. H. Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. J. Am. Chem. Soc. 2007, 129, 7758-7759.
[34]
Hu, H.; Zhao, B.; Itkis, M. E.; Haddon, R. C. Nitric acid purification of single-walled carbon nanotubes. J. Phys. Chem. B 2003, 107, 13838-13842.
[35]
Radosavljević, M.; Lefebvre, J.; Johnson, A. T. High-field electrical transport and breakdown in bundles of single-wall carbon nanotubes. Phys. Rev. B 2001, 64, 241307.
[36]
Han, J. H.; Strano, M. S. Room temperature carrier transport through large diameter bundles of semiconducting single-walled carbon nanotube. Mater. Res. Bull. 2014, 58, 1-5.
[37]
Mustonen, K.; Laiho, P.; Kaskela, A.; Susi, T.; Nasibulin, A. G.; Kauppinen, E. I. Uncovering the ultimate performance of single-walled carbon nanotube films as transparent conductors. Appl. Phys. Lett. 2015, 107, 143113.
[38]
Iakovlev, V. Y.; Krasnikov, D. V.; Khabushev, E. M.; Kolodiazhnaia, J. V.; Nasibulin, A. G. Artificial neural network for predictive synthesis of single-walled carbon nanotubes by aerosol CVD method. Carbon 2019, 153, 100-103.
[39]
Khabushev, E. M.; Krasnikov, D. V; Zaremba, O. T.; Tsapenko, A. P.; Goldt, A. E.; Nasibulin, A. G. Machine learning for tailoring optoelectronic properties of single-walled carbon nanotube films. J. Phys. Chem. Lett. 2019, 10, 6962-6966.
[40]
Kim, K. K.; Bae, J. J.; Park, H. K.; Kim, S. M.; Geng, H. Z.; Park, K. A.; Shin, H. J.; Yoon, S. M.; Benayad, A.; Choi, J. Y. et al. Fermi level engineering of single-walled carbon nanotubes by AuCl3 doping. J. Am. Chem. Soc. 2008, 130, 12757-12761.
[41]
Wang, B. W.; Jiang, S.; Zhu, Q. B.; Sun, Y.; Luan, J.; Hou, P. X.; Qiu, S.; Li, Q. W.; Liu, C.; Sun, D. M. et al. Continuous fabrication of meter-scale single-wall carbon nanotube films and their use in flexible and transparent integrated circuits. Adv. Mater. 2018, 30, 1802057.
[42]
Mustonen, K.; Laiho, P.; Kaskela, A.; Zhu, Z.; Reynaud, O.; Houbenov, N.; Tian, Y.; Susi, T.; Jiang, H.; Nasibulin, A. G. et al. Gas phase synthesis of non-bundled, small diameter single-walled carbon nanotubes with near-armchair chiralities. Appl. Phys. Lett. 2015, 107, 013106.
[43]
Tsapenko, A. P.; Goldt, A. E.; Shulga, E.; Popov, Z. I.; Maslakov, K. I.; Anisimov, A. S.; Sorokin, P. B.; Nasibulin, A. G. Highly conductive and transparent films of HAuCl4-doped single-walled carbon nanotubes for flexible applications. Carbon 2018, 130, 448-457.
[44]
Yao, Y. G.; Fu, K. K.; Zhu, S. Z.; Dai, J. Q.; Wang, Y. B.; Pastel, G.; Chen, Y. N.; Li, T.; Wang, C. W.; Li, T. et al. Carbon welding by ultrafast Joule heating. Nano Lett. 2016, 16, 7282-7289.
[45]
Artyukhov, V. I.; Penev, E. S.; Yakobson, B. I. Why nanotubes grow chiral. Nat. Commun. 2014, 5, 4892.
[46]
Rao, R.; Pierce, N.; Liptak, D.; Hooper, D.; Sargent, G.; Semiatin, S. L.; Curtarolo, S.; Harutyunyan, A. R.; Maruyama, B. Revealing the impact of catalyst phase transition on carbon nanotube growth by in situ Raman spectroscopy. ACS Nano 2013, 7, 1100-1107.
[47]
Yang, S. B.; Kong, B. S.; Jung, D. H.; Baek, Y. K.; Han, C. S.; Oh, S. K.; Jung, H. T. Recent advances in hybrids of carbon nanotube network films and nanomaterials for their potential applications as transparent conducting films. Nanoscale 2011, 3, 1361-1373.
Nano Research
Pages 112-120
Cite this article:
Ding E-X, Hussain A, Ahmad S, et al. High-performance transparent conducting films of long single-walled carbon nanotubes synthesized from toluene alone. Nano Research, 2020, 13(1): 112-120. https://doi.org/10.1007/s12274-019-2581-7
Topics:

1004

Views

20

Downloads

35

Crossref

N/A

Web of Science

37

Scopus

1

CSCD

Altmetrics

Received: 18 October 2019
Revised: 19 November 2019
Accepted: 25 November 2019
Published: 10 December 2019
© The Authors 2019

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return