AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Engineering defects and adjusting electronic structure on S doped MoO2 nanosheets toward highly active hydrogen evolution reaction

Shuo Geng1,2Yequn Liu3Yong Sheng Yu1,2( )Weiwei Yang2( )Haibo Li1
Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
Analytical Instrumentation Center, State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
Show Author Information

Graphical Abstract

Abstract

The electrocatalytic hydrogen evolution reaction (HER) is one of the most promising ways for low-cost hydrogen production in the future. In this work, hetero S atoms were introduced into the MoO2 to enhance the catalytic activity by simultaneously adjusting electron structure, engineering lattice defect, and increasing oxygen vacancies. And the S doped MoO2 nanosheets with proper S doping amount show the enhanced performance for HER. The optimized catalyst shows a small onset overpotential as low as 120 mV, a low overpotential of 176 mV at the current density of 10 mA/cm2 which is decreased 166 mV compared to that of the pristine MoO2 nanosheets, a low Tafel slope of 57 mV/decade, and a high turnover frequency of 0.13 H2/s per active site at 150 mV. This finding proposes an effective strategy to prepare nonprecious metal oxide catalyst for enhancing HER performance by rationally doping hetero atoms.

Electronic Supplementary Material

Download File(s)
12274_2019_2582_MOESM1_ESM.pdf (2.9 MB)

References

[1]
Zhang, J.; Wang, T.; Liu, P.; Liu, S. H.; Dong, R. H.; Zhuang, X. D.; Chen, M. W.; Feng, X. L. Engineering water dissociation sites in MoS2 nanosheets for accelerated electrocatalytic hydrogen production. Energy Environ. Sci. 2016, 9, 2789-2793.
[2]
Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148-5180.
[3]
Li, G. W.; Blake, G. R.; Palstra, T. T. M. Vacancies in functional materials for clean energy storage and harvesting: The perfect imperfection. Chem. Soc. Rev. 2017, 46, 1693-1706.
[4]
Yang, J.; Chen, B. X.; Liu, X. K.; Liu, W.; Li, Z. J.; Dong, J. C.; Chen, W. X.; Yan, W. S.; Yao, T.; Duan, X. Z. et al. Efficient and robust hydrogen evolution: Phosphorus nitride imide nanotubes as supports for anchoring single ruthenium Sites. Angew. Chem., Int. Ed. 2018, 57, 9495-9500.
[5]
Li, H. Y.; Chen, S. M.; Zhang, Y.; Zhang, Q. H.; Jia, X. F.; Gu, L.; Sun, X. M.; Song, L.; Wang, X. Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting. Nat. Commun. 2018, 9, 2452.
[6]
Fang, Z. W.; Peng, L. L.; Qian, Y. M.; Zhang, X.; Xie, Y. J.; Cha, J. J.; Yu, G. H. Dual tuning of Ni-Co-A (A = P,Se,O) nanosheets by anion substitution and holey engineering for efficient hydrogen evolution. J. Am. Chem. Soc. 2018, 140, 5241-5247.
[7]
Zhu, Z. J.; Yin, H. J.; He, C. T.; Al-Mamun, M.; Liu, P. R.; Jiang, L. X.; Zhao, Y.; Wang, Y.; Yang, H. C.; Tang, Z. Y. et al. Ultrathin transition metal dichalcogenide/3D metal hydroxide hybridized nanosheets to enhance hydrogen evolution activity. Adv. Mater. 2018, 30, 1801171.
[8]
Xie, J. F.; Zhang, J. J.; Li, S.; Grote, F.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan, B. C.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881-17888.
[9]
Ma, L. B.; Hu, Y.; Zhu, G. Y.; Chen, R. P.; Chen, T.; Lu, H. L.; Wang, Y. R.; Liang, J.; Liu, H. X.; Yan, C. Z. et al. In situ thermal synthesis of inlaid ultrathin MoS2/graphene nanosheets as electrocatalysts for the hydrogen evolution reaction. Chem. Mater. 2016, 28, 5733-5742.
[10]
Zhao, Z. H.; Qin, F.; Kasiraju, S.; Xie, L. X.; Alam, M. K.; Chen, S.; Wang, D. Z.; Ren, Z. F.; Wang, Z. M.; Grabow, L. C. et al. Vertically aligned MoS2/Mo2C hybrid nanosheets grown on carbon paper for efficient electrocatalytic hydrogen evolution. ACS Catal. 2017, 7, 7312-7318.
[11]
Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L. S.; Jin, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 2013, 135, 10274-10277.
[12]
Jaramillo, T. F.; Jorgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100-102.
[13]
Yuan, W. J.; Huang, Q.; Yang, X. J.; Cui, Z. D.; Zhu, S. L.; Li, Z. Y.; Du, S. Y.; Qiu, N. X.; Liang, Y. Q. Two-dimensional lamellar Mo2C for electrochemical hydrogen production: Insights into the origin of hydrogen evolution reaction activity in acidic and alkaline electrolytes. ACS Appl. Mater. Interfaces 2018, 10, 40500-40508.
[14]
Cheng, X. S.; Wang, D. X.; Liu, J. C.; Kang, X.; Yan, H. J.; Wu, A. P.; Gu, Y.; Tian, C. G.; Fu, H. G. Ultra-small Mo2N on SBA-15 as a highly efficient promoter of low-loading Pd for catalytic hydrogenation. Nanoscale 2018, 10, 22348-22356.
[15]
Chen, J. H.; Liu, J. W.; Xie, J. Q.; Ye, H. Q.; Fu, X. Z.; Sun, R.; Wong, C. P. Co-Fe-P nanotubes electrocatalysts derived from metal-organic frameworks for efficient hydrogen evolution reaction under wide pH range. Nano Energy 2019, 56, 225-233.
[16]
Ling, T.; Zhang, T.; Ge, B. H.; Han, L. L.; Zheng, L. R.; Lin, F.; Xu, Z. R.; Hu, W. B.; Du, X. W.; Davey, K. et al. Well-dispersed nickel- and zinc-tailored electronic structure of a transition metal oxide for highly active alkaline hydrogen evolution reaction. Adv. Mater. 2019, 31, 1807771.
[17]
Tang, Y. J.; Gao, M. R.; Liu, C. H.; Li, S. L.; Jiang, H. L.; Lan, Y. Q.; Han, M.; Yu, S. H. Porous molybdenum-based hybrid catalysts for highly efficient hydrogen evolution. Angew. Chem., Int. Ed. 2015, 54, 12928-12932.
[18]
Xie, X.; Yu, R. J.; Xue, N.; Yousaf, A. B.; Du, H.; Liang, K.; Jiang, N.; Xu, A. W. P doped molybdenum dioxide on Mo foil with high electrocatalytic activity for the hydrogen evolution reaction. J. Mater. Chem. A 2016, 4, 1647-1652.
[19]
Xie, X.; Lin, L.; Liu, R. Y.; Jiang, Y. F.; Zhu, Q.; Xu, A. W. The synergistic effect of metallic molybdenum dioxide nanoparticle decorated graphene as an active electrocatalyst for an enhanced hydrogen evolution reaction. J. Mater. Chem. A 2015, 3, 8055-8061.
[20]
Wu, L. F.; Wang, X. S.; Sun, Y. P.; Liu, Y.; Li, J. H. Flawed MoO2 belts transformed from MoO3 on a graphene template for the hydrogen evolution reaction. Nanoscale 2015, 7, 7040-7044.
[21]
Yang, L. J.; Zhou, W. J.; Hou, D. M.; Zhou, K.; Li, G. Q.; Tang, Z. H.; Li, L. G.; Chen, S. W. Porous metallic MoO2-supported MoS2 nanosheets for enhanced electrocatalytic activity in the hydrogen evolution reaction. Nanoscale 2015, 7, 5203-5208.
[22]
Jiang, P.; Yang, Y.; Shi, R. H.; Xia, G. L.; Chen, J. T.; Su, J. W.; Chen, Q. W. Pt-like electrocatalytic behavior of Ru-MoO2 nanocomposites for the hydrogen evolution reaction. J. Mater. Chem. A 2017, 5, 5475-5485.
[23]
Jin, Y. S.; Shen, P. K. Nanoflower-like metallic conductive MoO2 as a high-performance non-precious metal electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 2015, 3, 20080-20085.
[24]
Sun, C.; Wang, P. P.; Wang, H.; Xu, C.; Zhu, J. T.; Liang, Y. X.; Su, Y.; Jiang, Y. N.; Wu, W. Q.; Fu, E. G. et al. Defect engineering of molybdenum disulfide through ion irradiation to boost hydrogen evolution reaction performance. Nano Res. 2019, 12, 1613-1618.
[25]
Zhang, C.; Shi, Y. M.; Yu, Y. F.; Du, Y. H.; Zhang, B. Engineering sulfur defects, atomic thickness, and porous structures into cobalt sulfide nanosheets for efficient electrocatalytic alkaline hydrogen evolution. ACS Catal. 2018, 8, 8077-8083.
[26]
Xie, J. F.; Zhang, H.; Li, S.; Wang, R. X.; Sun, X.; Zhou, M.; Zhou, J. F.; Lou, X. W.; Xie, Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807-5813.
[27]
Jing, S. Y.; Zhang, L. S.; Luo, L.; Lu, J. J.; Yin, S. B.; Shen, P. K.; Tsiakaras, P. N-doped porous molybdenum carbide nanobelts as efficient catalysts for hydrogen evolution reaction. Appl. Catal. B: Environ. 2018, 224, 533-540.
[28]
Li, G. W.; Sun, Y.; Rao, J. C.; Wu, J. Q.; Kumar, A.; Xu, Q. N.; Fu, C. G.; Liu, E. K.; Blake, G. R.; Werner, P. et al. Carbon-tailored semimetal MoP as an efficient hydrogen evolution electrocatalyst in both alkaline and acid media. Adv. Energy Mater. 2018, 8, 1801258.
[29]
Ren, X. P.; Ma, Q.; Fan, H. B.; Pang, L. Q.; Zhang, Y. X.; Yao, Y.; Ren, X. D.; Liu, S. Z. A Se-doped MoS2 nanosheet for improved hydrogen evolution reaction. Chem. Commun. 2015, 51, 15997-16000.
[30]
Liang, K.; Pakhira, S.; Yang, Z. Z.; Nijamudheen, A.; Ju, L. C.; Wang, M. Y.; Aguirre-Velez, C. I.; Sterbinsky, G. E.; Du, Y. G.; Feng, Z. X. et al. Sdoped MoP nanoporous layer toward high-efficiency hydrogen evolution in pH-universal electrolyte. ACS Catal. 2019, 9, 651-659.
[31]
Xu, C.; Peng, S. J.; Tan, C. L.; Ang, H. X.; Tan, H. T.; Zhang, H.; Yan, Q. Y. Ultrathin S-doped MoSe2 nanosheets for efficient hydrogen evolution. J. Mater. Chem. A 2014, 2, 5597-5601.
[32]
Ito, Y.; Cong, W. T.; Fujita, T.; Tang, Z.; Chen, M. W. High catalytic activity of nitrogen and sulfur co-doped nanoporous graphene in the hydrogen evolution reaction. Angew. Chem. 2015, 127, 2159-2164.
[33]
Zhang, B.; Hou, J. G.; Wu, Y. Z.; Cao, S. Y.; Li, Z. W.; Nie, X. W.; Gao, Z. M.; Sun, L. C. Tailoring active sites in mesoporous defect-rich NC/Vo-WON heterostructure array for superior electrocatalytic hydrogen evolution. Adv. Energy Mater. 2019, 9, 1803693.
[34]
Kibsgaard, J.; Jaramillo, T. F. Molybdenum phosphosulfide: An active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 14433-14437.
[35]
Gao, W.; Yan, M.; Cheung, H. Y.; Xia, Z. M.; Zhou, X. M.; Qin, Y. B.; Wong, C. Y.; Ho, J. C.; Chang, C. R.; Qu, Y. Q. Modulating electronic structure of CoP electrocatalysts towards enhanced hydrogen evolution by Ce chemical doping in both acidic and basic media. Nano Energy 2017, 38, 290-296.
[36]
Liu, X. J.; Xi, W.; Li, C.; Li, X. B.; Shi, J.; Shen, Y. L.; He, J.; Zhang, L. H.; Xie, L.; Sun, X. M. et al. Nanoporous Zn-doped Co3O4 sheets with single-unit-cell-wide lateral surfaces for efficient oxygen evolution and water splitting. Nano Energy 2018, 44, 371-377.
Nano Research
Pages 121-126
Cite this article:
Geng S, Liu Y, Yu YS, et al. Engineering defects and adjusting electronic structure on S doped MoO2 nanosheets toward highly active hydrogen evolution reaction. Nano Research, 2020, 13(1): 121-126. https://doi.org/10.1007/s12274-019-2582-6
Topics:

775

Views

64

Crossref

N/A

Web of Science

64

Scopus

7

CSCD

Altmetrics

Received: 19 September 2019
Revised: 25 November 2019
Accepted: 26 November 2019
Published: 05 December 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return