AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ultrahigh sensitive near-infrared photodetectors based on MoTe2/germanium heterostructure

Wenjie Chen1,2Renrong Liang1,2( )Shuqin Zhang1,2Yu Liu1,2Weijun Cheng1,2Chuanchuan Sun3Jun Xu1,2( )
Institute of Microelectronics, Tsinghua University, Beijing 100084, China
Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
Beijing Institute of Control Engineering, Beijing 100084, China
Show Author Information

Graphical Abstract

Abstract

The efficient near-infrared light detection of the MoTe2/germanium (Ge) heterojunction has been demonstrated. The fabricated MoTe2/Ge van der Waals heterojunction shows excellent photoresponse performances under the illumination of a 915 nm laser. The photoresponsivity and specific detectivity can reach to 12,460 A/W and 3.3 × 1012 Jones, respectively. And the photoresponse time is 5 ms. However, the MoTe2/Ge heterojunction suffers from a large reverse current at dark due to the low barrier between MoTe2 and Ge. Therefore, to reduce the reverse current, an ultrathin GeO2 layer deposited by ozone oxidation has been introduced to the MoTe2/Ge heterojunction. The reverse current of the MoTe2/GeO2/Ge heterojunction at dark was suppressed from 0.44 μA/μm2 to 0.03 nA/μm2, being reduced by more than four orders of magnitude. The MoTe2/Ge heterojunction with the GeO2 layer also exhibits good photoresponse performances, with a high responsivity of 15.6 A/W, short response time of 5 ms, and good specific detectivity of 4.86 × 1011 Jones. These properties suggest that MoTe2/Ge heterostructure is one of the promising structures for the development of high performance near-infrared photodetectors.

References

[1]
Gobin, A. M.; Lee, M. H.; Halas, N. J.; James, W. D.; Drezek, R. A.; West, J. L. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett. 2007, 7, 1929-1934.
[2]
Miao, J. S.; Hu, W. D.; Guo, N.; Lu, Z. Y.; Liu, X. Q.; Liao, L.; Chen, P. P.; Jiang, T.; Wu, S. W.; Ho, J. C. et al. High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios. Small 2015, 11, 936-942.
[3]
Luo, L. B.; Chen, J. J.; Wang, M. Z.; Hu, H.; Wu, C. Y.; Li, Q.; Wang, L.; Huang, J. A.; Liang, F. X. Near-infrared light photovoltaic detector based on GaAs nanocone array/monolayer graphene schottky junction. Adv. Funct. Mater. 2014, 24, 2794-2800.
[4]
Zhu, S. Y.; Yu, M. B.; Lo, G. Q.; Kwong, D. L. Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications. Appl. Phys. Lett. 2008, 92, 081103.
[5]
Geis, M. W.; Spector, S. J.; Grein, M. E.; Schulein, R. T.; Yoon, J. U.; Lennon, D. M.; Deneault, S.; Gan, F.; Kaertner, F. X.; Lyszczarz, T. M. CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band. IEEE Photonics Technol. Lett. 2007, 19, 152-154.
[6]
Wang, X. D.; Wang, P.; Wang, J. L.; Hu, W. D.; Zhou, X. H.; Guo, N.; Huang, H.; Sun, S.; Shen, H.; Lin, T. et al. Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics. Adv. Mater. 2015, 27, 6575-6581.
[7]
Ye, L.; Li, H.; Chen, Z. F.; Xu, J. B. Near-infrared photodetector based on MoS2/black phosphorus heterojunction. Acs Photonics 2016, 3, 692-699.
[8]
Ye, L.; Wang, P.; Luo, W. J.; Gong, F.; Liao, L.; Liu, T. D.; Tong, L.; Zang, J. F.; Xu, J. B.; Hu, W. D. Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure. Nano Energy 2017, 37, 53-60.
[9]
Kang, D. H.; Kim, M. S.; Shim, J.; Jeon, J.; Park, H. Y.; Jung, W. S.; Yu, H. Y.; Pang, C. H.; Lee, S.; Park, J. H. High-performance transition metal dichalcogenide photodetectors enhanced by self-assembled monolayer doping. Adv. Funct. Mater. 2015, 25, 4219-4227.
[10]
De Fazio, D.; Goykhman, I.; Yoon, D.; Bruna, M.; Eiden, A.; Milana, S.; Sassi, U.; Barbone, M.; Dumcenco, D.; Marinov, K. et al. High responsivity, large-area graphene/MoS2 flexible photodetectors. ACS Nano 2016, 10, 8252-8262.
[11]
Zhang, W. J.; Chiu, M. H.; Chen, C. H.; Chen, W.; Li, L. J.; Wee, A. T. S. Role of metal contacts in high-performance phototransistors based on WSe2 monolayers. ACS Nano 2014, 8, 8653-8661.
[12]
Yu, S. H.; Lee, Y.; Jang, S. K.; Kang, J.; Jeon, J.; Lee, C.; Lee, J. Y.; Kim, H.; Hwang, E.; Lee, S. et al. Dye-sensitized MoS2 photodetector with enhanced spectral photoresponse. ACS Nano 2014, 8, 8285-8291.
[13]
Keum, D. H.; Cho, S.; Kim, J. H.; Choe, D. H.; Sung, H. J.; Kan, M.; Kang, H.; Hwang, J. Y.; Kim, S. W.; Yang, H. et al. Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys. 2015, 11, 482-486.
[14]
Huang, H.; Wang, J. L.; Hu, W. D.; Liao, L.; Wang, P.; Wang, X. D.; Gong, F.; Chen, Y.; Wu, G. J.; Luo, W. J. et al. Highly sensitive visible to infrared MoTe2 photodetectors enhanced by the photogating effect. Nanotechnology 2016, 27, 445201.
[15]
Yin, L.; Zhan, X. Y.; Xu, K.; Wang, F.; Wang, Z. X.; Huang, Y.; Wang, Q. S.; Jiang, C.; He, J. Ultrahigh sensitive MoTe2 phototransistors driven by carrier tunneling. Appl. Phys. Lett. 2016, 108, 043503.
[16]
Huang, H.; Wang, X. D.; Wang, P.; Wua, G. J.; Chen, Y.; Meng, C. M.; Liao, L.; Wang, J. L.; Hu, W. D.; Shen, H. et al. Ferroelectric polymer tuned two dimensional layered MoTe2 photodetector. RSC Adv. 2016, 6, 87416-87421.
[17]
Zhang, K. A.; Zhang, T. N.; Cheng, G. H.; Li, T. X.; Wang, S. X.; Wei, W.; Zhou, X. H.; Yu, W. W.; Sun, Y.; Wang, P. et al. Interlayer transition and infrared photodetection in atomically thin type-II MoTe2/MoS2 van der Waals heterostructures. ACS Nano 2016, 10, 3852-3858.
[18]
Kuiri, M.; Chakraborty, B.; Paul, A.; Das, S.; Sood, A. K.; Das, A. Enhancing photoresponsivity using MoTe2-graphene vertical heterostructures. Appl. Phys. Lett. 2016, 108, 063506.
[19]
Xie, C.; Mak, C.; Tao, X. M.; Yan, F. Photodetectors based on two-dimensional layered materials beyond graphene. Adv. Funct. Mater. 2017, 27, 1603886.
[20]
Wang, J. L.; Fang, H. H.; Wang, X. D.; Chen, X. S.; Lu, W.; Hu, W. D. Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet-visible to infrared. Small 2017, 13, 1700894.
[21]
Pezeshki, A.; Shokouh, S. H. H.; Nazari, T.; Oh, K.; Im, S. electric and photovoltaic behavior of a few-layer α-MoTe2/MoS2 dichalcogenide heterojunction. Adv. Mater. 2016, 28, 3216-3222.
[22]
Zhang, K.; Fang, X.; Wang, Y. L.; Wan, Y.; Song, Q. J.; Zhai, W. H.; Li, Y. P.; Ran, G. Z.; Ye, Y.; Dai, L. Ultrasensitive near-infrared photodetectors based on a graphene-MoTe2-graphene vertical van der Waals heterostructure. ACS Appl. Mater. Interfaces 2017, 9, 5392-5398.
[23]
Lee, H. S.; Choi, K.; Kim, J. S.; Yu, S.; Ko, K. R.; Im, S. Coupling two-dimensional MoTe2 and InGaZnO thin-film materials for hybrid PN junction and CMOS inverters. ACS Appl. Mater. Interfaces 2017, 9, 15592-15598.
[24]
Colace, L.; Masini, G.; Assanto, G.; Luan, H. C.; Wada, K.; Kimerling, L. C. Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates. Appl. Phys. Lett. 2000, 76, 1231-1233.
[25]
Masini, G.; Calace, L.; Assanto, G.; Luan, H. C.; Kimerling, L. C. High-performance p-i-n Ge on Si photodetectors for the near infrared: From model to demonstration. IEEE Trans. Electron Dev. 2001, 48, 1092-1096.
[26]
Ang, K. W.; Zhu, S. Y.; Wang, J.; Chua, K. T.; Yu, M. B.; Lo, G. Q.; Kwong, D. L. Novel silicon-carbon (Si:C) schottky barrier enhancement layer for dark-current suppression in Ge-on-SOI MSM photodetectors. IEEE Electron Device Lett. 2008, 29, 704-707.
[27]
Virot, L.; Benedikovic, D.; Szelag, B.; Alonso-Ramos, C.; Karakus, B.; Hartmann, J. M.; Le Roux, X.; Crozat, P.; Cassan, E.; Marris-Morini, D. et al. Integrated waveguide PIN photodiodes exploiting lateral Si/Ge/Si heterojunction. Opt. Express 2017, 25, 19487-19496.
[28]
Tseng, C. K.; Chen, W. T.; Chen, K. H.; Liu, H. D.; Kang, Y. M.; Na, N. L.; Lee, M. C. M. A self-assembled microbonded germanium/silicon heterojunction photodiode for 25 Gb/s high-speed optical interconnects. Sci. Rep. 2013, 3, 3225.
[29]
Zeng, L. H.; Wang, M. Z.; Hu, H.; Nie, B.; Yu, Y. Q.; Wu, C. Y.; Wang, L.; Hu, J. G.; Xie, C.; Liang, F. X. et al. Monolayer graphene/germanium schottky junction as high-performance self-driven infrared light photodetector. ACS Appl. Mater. Interfaces 2013, 5, 9362-9366.
[30]
Gao, Z. W.; Jin, W. F.; Zhou, Y.; Dai, Y.; Yu, B.; Liu, C.; Xu, W. J.; Li, Y. P.; Peng, H. L.; Liu, Z. F. et al. Self-powered flexible and transparent photovoltaic detectors based on CdSe nanobelt/graphene Schottky junctions. Nanoscale 2013, 5, 5576-5581.
[31]
Park, S.; Heo, S. W.; Lee, W.; Inoue, D.; Jiang, Z.; Yu, K.; Jinno, H.; Hashizume, D.; Sekino, M.; Yokota, T. et al. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature 2018, 561, 516-521.
[32]
Wu, E. P.; Wu, D.; Jia, C.; Wang, Y. G.; Yuan, H. Y.; Zeng, L. H.; Xu, T. T.; Shi, Z. F.; Tian, Y. T.; Li, X. J. In situ fabrication of 2D WS2/Si type-II heterojunction for self-powered broadband photodetector with response up to mid-infrared. ACS Photonics 2019, 6, 565-572.
[33]
Xiao, P.; Mao, J.; Ding, K.; Luo, W. J.; Hu, W. D.; Zhang, X. J.; Zhang, X. H.; Jie, J. S. Solution-processed 3D RGO-MoS2/pyramid Si heterojunction for ultrahigh detectivity and ultra-broadband photodetection. Adv. Mater. 2018, 30, 1801729.
[34]
Wu, D.; Guo, J. W.; Du, J.; Xia, C. X.; Zeng, L. H.; Tian, Y. Z.; Shi, Z. F.; Tian, Y. T.; Li, X. J.; Tsang, Y. H. et al. Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. ACS Nano 2019, 13, 9907-9917.
[35]
Octon, T. J.; Nagareddy, V. K.; Russo, S.; Craciun, M. F.; Wright, C. D. Fast high-responsivity few-layer MoTe2 photodetectors. Adv. Opt. Mater. 2016, 4, 1750-1754.
[36]
Sun, C. C.; Liang, R. R.; Liu, L. B.; Wang, J.; Xu, J. Leakage current of germanium-on-insulator-based junctionless nanowire transistors. Appl. Phys. Lett. 2015, 107, 132105.
[37]
Li, X. M.; Zhu, M.; Du, M. D.; Lv, Z.; Zhang, L.; Li, Y. C.; Yang, Y.; Yang, T. T.; Li, X.; Wang, K. L. et al. High detectivity graphene-silicon heterojunction photodetector. Small 2016, 12, 595-601.
[38]
Yu, W. Z.; Li, S. J.; Zhang, Y. P.; Ma, W. L.; Sun, T.; Yuan, J.; Fu, K.; Bao, Q. L. Near-infrared photodetectors based on MoTe2/graphene heterostructure with high responsivity and flexibility. Small 2017, 13, 1700268.
[39]
Wang, B.; Yang, S. X.; Wang, C.; Wu, M. H.; Huang, L.; Liu, Q.; Jiang, C. B. Enhanced current rectification and self-powered photoresponse in multilayer p-MoTe2/n-MoS2 van der Waals heterojunctions. Nanoscale 2017, 9, 10733-10740.
Nano Research
Pages 127-132
Cite this article:
Chen W, Liang R, Zhang S, et al. Ultrahigh sensitive near-infrared photodetectors based on MoTe2/germanium heterostructure. Nano Research, 2020, 13(1): 127-132. https://doi.org/10.1007/s12274-019-2583-5
Topics:

822

Views

64

Crossref

N/A

Web of Science

66

Scopus

7

CSCD

Altmetrics

Received: 11 September 2019
Revised: 13 November 2019
Accepted: 27 November 2019
Published: 09 December 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return