AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Scanning tunneling spectroscopic study of monolayer 1T-TaS2 and 1T-TaSe2

Haicheng Lin1,§Wantong Huang1,§Kun Zhao1Shuang Qiao1Zheng Liu2Jian Wu1Xi Chen1( )Shuai-Hua Ji1( )
State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
Institute for Advanced Studies, Tsinghua University, Beijing 100084, China

§ Haicheng Lin andWantong Huang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The isostructural and isoelectronic transition-metal-dichalcogenides 1T-TaS2 and 1T-TaSe2 are layered materials with intricate electronic structures. Combining the molecular beam epitaxy growth, scanning tunneling microscopy measurements and first-principles calculations, we prepare monolayer 1T-TaS2 and TaSe2 and explore their electronic structures at the atomic scale. Both two-dimensional (2D) compounds exhibit commensurate charge density wave phase at low temperature. The conductance mapping identifies the contributions from different Ta atoms to the local density of states with spatial and energy resolution. Both 1T-TaS2 and 1T-TaSe2 monolayer are shown to be insulators, while the former has a Mott gap and the latter is a regular band insulator.

References

[1]
Fazekas, P.; Tosatti, E. Electrical, structural and magnetic properties of pure and doped 1T-TaS2. Philos. Mag. B 1979, 39, 229-244.
[2]
Di Salvo, F. J.; Graebner, J. E. The low temperature electrical properties of 1T-TaS2. Solid State Commun. 1977, 23, 825-828.
[3]
Rossnagel, K.; Smith, N. V. Spin-orbit coupling in the band structure of reconstructed 1T-TaS2. Phys. Rev. B 2006, 73, 073106.
[4]
Perfetti, L.; Gloor, T. A.; Mila, F.; Berger, H.; Grioni, M. Unexpected periodicity in the quasi-two-dimensional Mott insulator 1T-TaS2 revealed by angle-resolved photoemission. Phys. Rev. B 2005, 71, 153101.
[5]
Ang, R.; Tanaka, Y.; Ieki, E.; Nakayama, K.; Sato, T.; Li, L. J.; Lu, W. J.; Sun, Y. P.; Takahashi, T. Real-space coexistence of the melted Mott state and superconductivity in Fe-substituted 1T-TaS2. Phys. Rev. Lett. 2012, 109, 176403.
[6]
Perfetti, L.; Loukakos, P. A.; Lisowski, M.; Bovensiepen, U.; Berger, H.; Biermann, S.; Cornaglia, P. S.; Georges, A.; Wolf, M. Time evolution of the electronic structure of 1T-TaS2 through the insulator-metal transition. Phys. Rev. Lett. 2006, 97, 067402.
[7]
Wilson, J. A.; de Salvo, F. J.; Mahajan, S. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 2001, 50, 1171-1248.
[8]
Rossnagel, K. On the origin of charge-density waves in select layered transition-metal dichalcogenides. J. Phys.: Condens. Matter. 2011, 23, 213001.
[9]
Cho, D.; Cho, Y. H.; Cheong, S. W.; Kim, K. S.; Yeom, H. W. Interplay of electron-electron and electron-phonon interactions in the low-temperature phase of 1T-TaS2. Phys. Rev. B 2015, 92, 085132.
[10]
Scruby, C. B.; Williams, P. M.; Parry, G. S. The role of charge density waves in structural transformations of 1T-TaS2. Philos. Mag. 1975, 31, 255-274.
[11]
Smith, N. V.; Kevan, S. D.; DiSalvo, F. J. Band structures of the layer compounds 1T-TaS2 and 2H-TaSe2 in the presence of commensurate charge-density waves. J. Phys. C: Solid State Phys. 1985, 18, 3175-3189.
[12]
Ritschel, T.; Trinckauf, J.; Koepernik, K.; Büchner, B.; Zimmermann, M. V.; Berger, H.; Joe, Y. I.; Abbamonte, P.; Geck, J. Orbital textures and charge density waves in transition metal dichalcogenides. Nat. Phys. 2015, 11, 328-331.
[13]
Qiao, S.; Li, X. T.; Wang, N. Z.; Ruan, W.; Ye, C.; Cai, P.; Hao, Z. Q.; Yao, H.; Chen, X. H.; Wu, J. et al. Mottness collapse in 1T-TaS2-xSex transition-metal dichalcogenide: An interplay between localized and itinerant orbitals. Phys. Rev. X 2017, 7, 041054.
[14]
Bovet, M.; van Smaalen, S.; Berger, H.; Gaal, R.; Forró, L.; Schlapbach, L.; Aebi, P. Interplane coupling in the quasi-two-dimensional 1T-TaS2. Phys. Rev. B 2003, 67, 125105.
[15]
Tsang, J. C.; Smith, J. E. Jr.; Shafer, M. W.; Meyer, S. F. Raman spectroscopy of the charge-density-wave state in 1T- and 2H-TaSe2. Phys. Rev. B 1977, 16, 4239-4245.
[16]
Horiba, K.; Ono, K.; Oh, J. H.; Kihara, T.; Nakazono, S.; Oshima, M.; Shiino, O.; Yeom, H. M.; Kakizaki, A.; Aiura, Y. Charge-density wave and three-dimensional Fermi surface in 1T-TaSe2 studied by photoemission spectroscopy. Phys. Rev. B 2002, 66, 073106.
[17]
Ge, Y. Z.; Liu, A. Y. First-principles investigation of the charge-density-wave instability in 1T-TaSe2. Phys. Rev. B 2010, 82, 155133.
[18]
Darancet, P.; Millis, A. J.; Marianetti, C. A. Three-dimensional metallic and two-dimensional insulating behavior in octahedral tantalum dichalcogenides. Phys. Rev. B 2014, 90, 045134.
[19]
Suzuki, M. T.; Harima, H. Electronic band structure of 1T-TaSe2 in CDW phase. J. Magn. Magn. Mater. 2004, 272-276, E653-E654.
[20]
Ngankeu, A. S.; Mahatha, S. K.; Guilloy, K.; Bianchi, M.; Sanders, C. E.; Hanff, K.; Rossnagel, K.; Miwa, J. A.; Nielsen, C. B.; Bremholm, M. et al. Quasi-one-dimensional metallic band dispersion in the commensurate charge density wave of 1T-TaS2. Phys. Rev. B 2017, 96, 195147.
[21]
Ma, L. G.; Ye, C.; Yu, Y. J.; Lu, X. F.; Niu, X. H.; Kim, S.; Feng, D. L.; Tománek, D.; Son, Y. W.; Chen, X. H. et al. A metallic mosaic phase and the origin of Mott-insulating state in 1T-TaS2. Nat. Commun. 2016, 7, 10956.
[22]
Dardel, B.; Grioni, M.; Malterre, D.; Weibel, P.; Baer, Y.; Lévy, F. Temperature-dependent pseudogap and electron localization in 1T-TaS2. Phys. Rev. B 1992, 45, 1462-1465.
[23]
Cho, D.; Cheon, S.; Kim, K. S.; Lee, S. H.; Cho, Y. H.; Cheong, S. W.; Yeom, H. W. Nanoscale manipulation of the Mott insulating state coupled to charge order in 1T-TaS2. Nat. Commun. 2016, 7, 10453.
[24]
Yu, Y. J.; Yang, F. Y.; Lu, X. F.; Yan, Y. J.; Cho, Y. H.; Ma, L. G.; Niu, X. H.; Kim, S.; Son, Y. W.; Feng, D. L. et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotechnol. 2015, 10, 270-276.
[25]
Yoshida, M.; Zhang, Y. J.; Ye, J. T.; Suzuki, R.; Imai, Y.; Kimura, S.; Fujiwara, A.; Iwasa, Y. Controlling charge-density-wave states in nano-thick crystals of 1T-TaS2. Sci. Rep. 2014, 4, 7302.
[26]
Tsen, A. W.; Hovden, R.; Wang, D.; Kim, Y. D.; Okamoto, J.; Spoth, K. A.; Liu, Y.; Lu, W. J.; Sun, Y. P.; Hone, J. C. et al. Structure and control of charge density waves in two-dimensional 1T-TaS2. Proc. Natl. Acad. Sci. USA 2015, 112, 15054-15059.
[27]
Albertini, O. R.; Zhao, R.; McCann, R. L.; Feng, S. M.; Terrones, M.; Freericks, J. K.; Robinson, J. A.; Liu, A. Y. Zone-center phonons of bulk, few-layer, and monolayer 1T-TaS2: Detection of commensurate charge density wave phase through Raman scattering. Phys. Rev. B 2016, 93, 214109.
[28]
He, R.; Okamoto, J.; Ye, Z. P.; Ye, G. H.; Anderson, H.; Dai, X.; Wu, X. X.; Hu, J. P.; Liu, Y.; Lu, W. J. et al. Distinct surface and bulk charge density waves in ultrathin 1T-TaS2. Phys. Rev. B 2016, 94, 201108.
[29]
Sakabe, D.; Liu, Z.; Suenaga, K.; Nakatsugawa, K.; Tanda, S. Direct observation of mono-layer, bi-layer, and tri-layer charge density waves in 1T-TaS2 by transmission electron microscopy without a substrate. NPJ Quan. Mater. 2017, 2, 22.
[30]
Lin, H. C.; Huang, W. T.; Zhao, K.; Lian, C. S.; Duan, W. H.; Chen, X.; Ji, S. H. Growth of atomically thick transition metal sulfide films on graphene/6H-SiC(0001) by molecular beam epitaxy. Nano Res. 2018, 11, 4722-4727.
[31]
Law, K. T.; Lee, P. A. 1T-TaS2 as a quantum spin liquid. Proc. Natl. Acad. Sci. USA 2017, 114, 6996-7000.
[32]
Klanjšek, M.; Zorko, A.; Žitko, R.; Mravlje, J.; Jagličić, Z.; Biswas, P. K.; Prelovšek, P.; Mihailovic, D.; Arčon, D. A high-temperature quantum spin liquid with polaron spins. Nat. Phys. 2017, 13, 1130-1134.
[33]
Ribak, A.; Silber, I.; Baines, C.; Chashka, K.; Salman, Z.; Dagan, Y.; Kanigel, A. Gapless excitations in the ground state of 1T-TaS2. Phys. Rev. B 2017, 96, 195131.
[34]
Nakata, Y.; Yoshizawa, T.; Sugawara, K.; Umemoto, Y.; Takahashi, T.; Sato, T. Selective fabrication of mott-insulating and metallic monolayer TaSe2. ACS Appl. Nano Mater. 2018, 1, 1456-1460.
[35]
Samnakay, R.; Wickramaratne, D.; Pope, T.; Lake, R. K.; Salguero, T. T.; Balandin, A. A. Zone-folded phonons and the commensurate-incommensurate charge-density-wave transition in 1T-TaSe2 thin films. Nano Lett. 2015, 15, 2965-2973.
[36]
Perfetti, L.; Georges, A.; Florens, S.; Biermann, S.; Mitrovic, S.; Berger, H.; Tomm, Y.; Höchst, H.; Grioni, M. Spectroscopic signatures of a bandwidth-controlled mott transition at the surface of 1T-TaSe2. Phys. Rev. Lett. 2003, 90, 166401.
[37]
Colonna, S.; Ronci, F.; Cricenti, A.; Perfetti, L.; Berger, H.; Grioni, M. Mott phase at the surface of 1T-TaSe2 observed by scanning tunneling microscopy. Phys. Rev. Lett. 2005, 94, 036405.
[38]
Bjerkelund, E.; Kjekshus, A. On the structural properties of the Ta1+xSe2 phase. Acta Chem. Scand. 1967, 21, 513-526.
[39]
Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558-561.
[40]
Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251-14269.
[41]
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.
[42]
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
[43]
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.
[44]
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
[45]
Liechtenstein, A. I.; Anisimov, V. I.; Zaanen, J. Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. Phys. Rev. B 1995, 52, R5467-R5470.
[46]
Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 1998, 57, 1505-1509.
Nano Research
Pages 133-137
Cite this article:
Lin H, Huang W, Zhao K, et al. Scanning tunneling spectroscopic study of monolayer 1T-TaS2 and 1T-TaSe2. Nano Research, 2020, 13(1): 133-137. https://doi.org/10.1007/s12274-019-2584-4
Topics:

857

Views

53

Crossref

N/A

Web of Science

53

Scopus

1

CSCD

Altmetrics

Received: 27 September 2019
Revised: 22 November 2019
Accepted: 27 November 2019
Published: 23 December 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return