AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

A prospective future towards bio/medical technology and bioelectronics based on 2D vdWs heterostructures

Guru Prakash Neupane1,§( )Linglong Zhang1,§Tanju Yildirim1Kai Zhou2Bowen Wang1Yilin Tang1Wendi Ma1Yunzhou Xue3( )Yuerui Lu1( )
Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, The Australian National University, Canberra ACT 2601, Australia
College of Mechatronics and Control Engineering, Shenzhen University, Nan-hai Ave 3688, Shenzhen 518060, China
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518052, China

§ Guru Prakash Neupane and Linglong Zhang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Nano-biotechnology research has become extremely important due to the possibilities in manipulation and characterization of biological molecules through nanodevices. Nanomaterials exhibit exciting electrical, optoelectronic, magnetic, mechanical and chemical properties that can be exploited to develop efficient biosensors or bio-probes. Those unique properties in nanomaterials can also be used in bioimaging and cancer therapeutics, where biomolecules influence the inherent properties in nanomaterials. Effective manipulation of nanomaterial properties can lead to many breakthroughs in nanotechnology applications. Nowadays, two-dimensional (2D) nanomaterials have emerged as viable materials for nanotechnology. Large cross-section area and functional availability of 2D or one-dimensional (1D) quantum limit in these nanomaterials allow greater flexibility and better nanodevice performance. 2D nanomaterials enable advanced bioelectronics to be more easily integrated due to their atomic thickness, biocompatibility, mechanical flexibility and conformity. Furthermore, with the development of 2D material heterostructures, enhanced material properties can be obtained which can directly influence bio-nanotechnology applications. This article firstly reviews the development of various types of 2D heterostructures in a wide variety of nano-biotechnology applications. Furthermore, future 2D heterostructure scopes in bioimaging, nanomedicine, bio-markers/therapy and bioelectronics are discussed. This paper can be an avenue for providing a wide scope for 2D van der Waals (vdWs) heterostructures in bio- and medical fields.

References

[1]
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
[2]
Yan, A.; Velasco, J., Jr.; Kahn, S.; Watanabe, K.; Taniguchi, T.; Wang, W.; Crommie, M. F.; Zettl, A. Direct growth of single- and few-layer MoS2 on h-BN with preferred relative rotation angles. Nano Lett. 2015, 15, 6324-6331.
[3]
Zhou, L.; Xu, K.; Zubair, A.; Liao, A. D.; Fang, W. J.; Ouyang, F. P.; Lee, Y. H.; Ueno, K.; Saito, R. et al. Large-area synthesis of high-quality uniform few-layer MoTe2. J. Am. Chem. Soc. 2015, 137, 11892-11895.
[4]
Hwang, W. S.; Remskar, M.; Yan, R. S.; Protasenko, V.; Tahy, K.; Chae, S. D.; Zhao, P.; Konar, A.; Xing, H. L. et al. Transistors with chemically synthesized layered semiconductor WS2 exhibiting 105 room temperature modulation and ambipolar behavior. Appl. Phys. Lett. 2012, 101, 013107.
[5]
Tebyetekerwa, M.; Zhang, J.; Liang, K.; Duong, T.; Neupane, G. P.; Zhang, L. L.; Liu, B. Q.; Truong, T. N.; Basnet, R. et al. Quantifying quasi-fermi level splitting and mapping its heterogeneity in atomically thin transition metal dichalcogenides. Adv. Mater. 2019, 31, 1900522.
[6]
Zhu, Y.; Li, Z. Y.; Zhang, L. L.; Wang, B. W.; Luo, Z. Q.; Long, J. Z.; Yang, J.; Fu, L.; Lu, Y. R. High-efficiency monolayer molybdenum ditelluride light-emitting diode and photodetector. ACS Appl. Mater. Interfaces 2018, 10, 43291-43298.
[7]
Ma, R. Z.; Sasaki, T. Nanosheets of oxides and hydroxides: Ultimate 2D charge-bearing functional crystallites. Adv. Mater. 2010, 22, 5082-5104.
[8]
Nicolosi, V.; Chhowalla, M.; Kanatzidis, M. G.; Strano, M. S.; Coleman, J. N. Liquid exfoliation of layered materials. Science 2013, 340, 1226419.
[9]
Gomes, L. C.; Carvalho, A. Phosphorene analogues: Isoelectronic two-dimensional group-IV monochalcogenides with orthorhombic structure. Phys. Rev. B 2015, 92, 085406.
[10]
Shi, G. S.; Kioupakis, E. Anisotropic spin transport and strong visible-light absorbance in few-layer SnSe and GeSe. Nano Lett. 2015, 15, 6926-6931.
[11]
Xia, F. N.; Wang, H.; Jia, Y. C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458.
[12]
Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional transition metal carbides. ACS Nano 2012, 6, 1322-1331.
[13]
Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 2014, 26, 992-1005.
[14]
Sharma, A.; Khan, A.; Zhu, Y.; Halbich, R.; Ma, W. D.; Tang, Y. L.; Wang, B. W.; Lu, Y. R. Quasi-line spectral emissions from highly crystalline one-dimensional organic nanowires. Nano Lett. 2019, 19, 7877-7886.
[15]
Neupane, G. P.; Dhakal, K. P.; Cho, E. H.; Kim, B. G.; Lim, S.; Lee, J.; Seo, C.; Kim, Y. B.; Kim, M. S. et al. Enhanced luminescence and photocurrent of organic microrod/ZnO nanoparticle hybrid system: Nanoscale optical and electrical characteristics. Electron. Mater. Lett. 2015, 11, 741-748.
[16]
Neupane, G. P.; Ma, W. D.; Yildirim, T.; Tang, Y. L.; Zhang, L. L.; Lu, Y. R. 2D organic semiconductors, the future of green nanotechnology. Nano Mater. Sci. 2019, in press, .
[17]
Zhang, L. L.; Sharma, A.; Zhu, Y.; Zhang, Y. H.; Wang, B. W.; Dong, M. H.; Nguyen, H. T.; Wang, Z.; Wen, B. et al. Efficient and layer-dependent exciton pumping across atomically thin organic- inorganic type-I heterostructures. Adv. Mater. 2018, 30, 1803986.
[18]
Chong, Y.; Ge, C. C.; Fang, G.; Wu, R. F.; Zhang, H.; Chai, Z. F.; Chen, C. Y.; Yi, J. J. Light-enhanced antibacterial activity of graphene oxide, mainly via accelerated electron transfer. Environ. Sci. Technol. 2017, 51, 10154-10161.
[19]
Liu, T.; Wang, C.; Gu, X.; Gong, H.; Cheng, L.; Shi, X. Z.; Feng, L. Z.; Sun, B. Q.; Liu, Z. Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. Adv. Mater. 2014, 26, 3433-3440.
[20]
Cheng, L.; Liu, J. J.; Gu, X.; Gong, H.; Shi, X. Z.; Liu, T.; Wang, C.; Wang, X. Y.; Liu, G. et al. PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. Adv. Mater. 2014, 26, 1886-1893.
[21]
Pan, Y. Z.; Sahoo, N. G.; Li, L. The application of graphene oxide in drug delivery. Expert Opin. Drug Deliv. 2012, 9, 1365-1376.
[22]
Li, B. L.; Setyawati, M. I.; Chen, L. Y.; Xie, J. P.; Ariga, K.; Lim, C. T.; Garaj, S.; Leong, D. T. Directing assembly and disassembly of 2D MoS2 nanosheets with DNA for drug delivery. ACS Appl. Mater. Interfaces 2017, 9, 15286-15296.
[23]
Han, X. X.; Huang, J.; Lin, H.; Wang, Z. G.; Li, P.; Chen, Y. 2D ultrathin MXene-based drug-delivery nanoplatform for synergistic photothermal ablation and chemotherapy of Cancer. Adv. Healthc. Mater. 2018, 7, e1701394.
[24]
McManus, D.; Vranic, S.; Withers, F.; Sanchez-Romaguera, V.; Macucci, M.; Yang, H. F.; Sorrentino, R.; Parvez, K.; Son, S. K. et al. Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nat. Nanotechnol. 2017, 12, 343-350.
[25]
Merlo, A.; Mokkapati, V. R. S. S.; Pandit, S.; Mijakovic, I. Boron nitride nanomaterials: Biocompatibility and bio-applications. Biomater. Sci. 2018, 6, 2298-2311.
[26]
Chen, H.; Liu, T. J.; Su, Z. Q.; Shang, L.; Wei, G. 2D transition metal dichalcogenide nanosheets for photo/thermo-based tumor imaging and therapy. Nanoscale Horiz. 2018, 3, 74-89.
[27]
Shi, X. Z.; Gong, H.; Li, Y. J.; Wang, C.; Cheng, L.; Liu, Z. Graphene-based magnetic plasmonic nanocomposite for dual bioimaging and photothermal therapy. Biomaterials 2013, 34, 4786-4793.
[28]
Luo, Y. N.; Li, Z. H.; Zhu, C. Z.; Cai, X. L.; Qu, L. B.; Du, D.; Lin, Y. H. Graphene-like metal-free 2D nanosheets for cancer imaging and theranostics. Trends Biotechnol. 2018, 36, 1145-1156.
[29]
Liu, B.; Li, C. X.; Chen, G. Y.; Liu, B.; Deng, X. R.; Wei, Y.; Xia, J.; Xing, B. G.; Ma, P. A. et al. Synthesis and optimization of MoS2@Fe3O4-ICG/Pt(IV) nanoflowers for MR/IR/PA bioimaging and combined PTT/PDT/chemotherapy triggered by 808 nm laser. Adv. Sci. 2017, 4, 1600540.
[30]
Chen, Y. J.; Wu, Y. K.; Sun, B. B.; Liu, S. J.; Liu, H. Y. Two-dimensional nanomaterials for cancer nanotheranostics. Small 2017, 13, 1603446.
[31]
Shao, J. D.; Xie, H. H.; Wang, H. Y.; Zhou, W. H.; Luo, Q.; Yu, X. F.; Chu, P. K. 2D material-based nanofibrous membrane for photothermal cancer therapy. ACS Appl. Mater. Interfaces 2018, 10, 1155-1163.
[32]
Lu, C.; Liu, Y. B.; Ying, Y. B.; Lin, J. W. Comparison of MoS2, WS2, and graphene oxide for DNA adsorption and sensing. Langmuir 2017, 33, 630-637.
[33]
Barua, S.; Dutta, H. S.; Gogoi, S.; Devi, R.; Khan, R. Nanostructured MoS2-based advanced biosensors: A review. ACS Appl. Nano Mater. 2018, 1, 2-25.
[34]
Gao, L.; Li, Q.; Deng, Z. B.; Brady, B.; Xia, N.; Zhou, Y.; Shi, H. X. Highly sensitive protein detection via covalently linked aptamer to MoS2 and exonuclease-assisted amplification strategy. Int. J. Nanomedicine 2017, 12, 7847-7853.
[35]
Kang, P.; Wang, M. C.; Nam, S. W. Bioelectronics with two-dimensional materials. Microelectron. Eng. 2016, 161, 18-35.
[36]
Zhang, T.; Liu, J. L.; Wang, C.; Leng, X. Y.; Xiao, Y.; Fu, L. Synthesis of graphene and related two-dimensional materials for bioelectronics devices. Biosens. Bioelectron. 2017, 89, 28-42.
[37]
Osikoya, A. O.; Tiwari, A. Recent advances in 2D bioelectronics. Biosens. Bioelectron. 2017, 89, 1-7.
[38]
Neupane, G. P.; Tran, M. D.; Kim, H.; Kim, J. Modulation of optical and electrical characteristics by laterally stretching DNAs on CVD-grown monolayers of MoS2. J. Nanomater. 2017, 2017, 2565703.
[39]
Metsemakers, W. J.; Kuehl, R.; Moriarty, T. F.; Richards, R. G.; Verhofstad, M. H. J.; Borens, O.; Kates, S.; Morgenstern, M. Infection after fracture fixation: Current surgical and microbiological concepts. Injury 2018, 49, 511-522.
[40]
Shadjou, N.; Hasanzadeh, M. Graphene and its nanostructure derivatives for use in bone tissue engineering: Recent advances. J. Biomed. Mater. Res. A 2016, 104, 1250-1275.
[41]
Fan, J. J.; Li, Y. F.; Nguyen, H. N.; Yao, Y.; Rodrigues, D. F. Toxicity of exfoliated-MoS2 and annealed exfoliated-MoS2 towards planktonic cells, biofilms, and mammalian cells in the presence of electron donor. Environ. Sci.: Nano 2015, 2, 370-379.
[42]
Yang, X.; Li, J.; Liang, T.; Ma, C. Y.; Zhang, Y. Y.; Chen, H. Z.; Hanagata, N.; Su, H. X.; Xu, M. S. Antibacterial activity of two-dimensional MoS2 sheets. Nanoscale 2014, 6, 10126-10133.
[43]
Rasool, K.; Mahmoud, K. A.; Johnson, D. J.; Helal, M.; Berdiyorov, G. R.; Gogotsi, Y. Efficient antibacterial membrane based on two-dimensional Ti3C2Tx (MXene) nanosheets. Sci. Rep. 2017, 7, 1598.
[44]
Liu, S. B.; Zeng, T. H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R. R.; Kong, J.; Chen, Y. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano 2011, 5, 6971-6980.
[45]
Li, T.; Shen, J. F.; Li, N.; Ye, M. X. Facile in situ synthesis of hydrophilic RGO-CD-Ag supramolecular hybrid and its enhanced antibacterial properties. Mater. Sci. Eng. C 2014, 39, 352-358.
[46]
Eliaz, N.; Metoki, N. Calcium phosphate bioceramics: A review of their history, structure, properties, coating technologies and biomedical applications. Materials 2017, 10, 334.
[47]
Kolmas, J.; Groszyk, E.; Kwiatkowska-Różycka, D. Substituted hydroxyapatites with antibacterial properties. BioMed Res. Int. 2014, 2014, 178123.
[48]
Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 2013, 13, 5944-5948.
[49]
Zhang, Y. J.; Kim, Y.; Gilbert, M. J.; Mason, N. Electronic transport in a two-dimensional superlattice engineered via self-assembled nanostructures. npj 2D Mater. Appl. 2018, 2, 31.
[50]
Ghimire, G.; Dhakal, K. P.; Neupane, G. P.; Jo, S. G.; Kim, H.; Seo, C.; Lee, Y. H.; Joo, J.; Kim, J. Optically active charge transfer in hybrids of Alq3 nanoparticles and MoS2 monolayer. Nanotechnology 2017, 28, 185702.
[51]
Wang, X. H.; Yildirim, T.; Si, K. J.; Sharma, A.; Xue, Y. Z.; Qin, Q. H.; Bao, Q. L.; Cheng, W. L.; Lu, Y. R. An adaptive soft plasmonic nanosheet resonator. Laser Photonics Rev. 2019, 13, 1800302.
[52]
Tedeschi, D.; Blundo, E.; Felici, M.; Pettinari, G.; Liu, B. Q.; Yildrim, T.; Petroni, E.; Zhang, C.; Zhu, Y. et al. Controlled micro/nanodome formation in proton-irradiated bulk transition-metal dichalcogenides. Adv. Mater. 2019, 31, 1903795.
[53]
Zhang, L. L.; Yan, H.; Sun, X. Q.; Dong, M. H.; Yildirim, T.; Wang, B. W.; Wen, B.; Neupane, G. P.; Sharma, A. et al. Modulated interlayer charge transfer dynamics in a monolayer TMD/metal junction. Nanoscale 2019, 11, 418-425.
[54]
Peña-Bahamonde, J.; Nguyen, H. N.; Fanourakis, S. K.; Rodrigues, D. F. Recent advances in graphene-based biosensor technology with applications in life sciences. J. Nanobiotechnol. 2018, 16, 75.
[55]
Kumar, S.; Lei, Y. J.; Alshareef, N. H.; Quevedo-Lopez, M. A.; Salama, K. N. Biofunctionalized two-dimensional Ti3C2 MXenes for ultrasensitive detection of cancer biomarker. Biosens. Bioelectron. 2018, 121, 243-249.
[56]
Zheng, J. S.; Wang, B.; Ding, A. L.; Weng, B.; Chen, J. C. Synthesis of MXene/DNA/Pd/Pt nanocomposite for sensitive detection of dopamine. J. Electroanal. Chem. 2018, 816, 189-194.
[57]
Rasoo, K.; Hela, M.; Ali, A.; Ren, C. E.; Gogotsi, Y.; Mahmoud, K. A. Antibacterial activity of Ti3C2Tx MXene. ACS Nano 2016, 10, 3674-3684.
[58]
Lin, H.; Chen, Y.; Shi, J. L. Insights into 2D MXenes for versatile biomedical applications: Current advances and challenges ahead. Adv. Sci. 2018, 5, 1800518.
[59]
Sharma, A.; Wen, B.; Liu, B. Q.; Myint, Y. W.; Zhang, H.; Lu, Y. R. Defect engineering in few-layer phosphorene. Small 2018, 14, 1704556.
[60]
Pei, J. J.; Yang, J.; Yildirim, T.; Zhang, H.; Lu, Y. R. Many-body complexes in 2D semiconductors. Adv. Mater. 2019, 31, 1706945.
[61]
Pei, J. J.; Yang, J.; Wang, X. B.; Wang, F.; Mokkapati, S.; Lü, T. Y.; Zheng, J. C.; Qin, Q. H.; Neshev, D. et al. Excited state biexcitons in atomically thin MoSe2. ACS Nano 2017, 11, 7468-7475.
[62]
Zhu, Y.; Yang, J.; Zhang, S.; Mokhtar, S.; Pei, J. J.; Wang, X. H.; Lu, Y. R. Strongly enhanced photoluminescence in nanostructured monolayer MoS2 by chemical vapor deposition. Nanotechnology 2016, 27, 135706.
[63]
Neupane, G. P.; Zhou, K.; Chen, S. S.; Yildirim, T.; Zhang, P. X.; Lu, Y. R. In-plane isotropic/anisotropic 2D van der Waals heterostructures for future devices. Small 2019, 15, 1804733.
[64]
Zhu, C. F.; Zeng, Z. Y.; Li, H.; Li, F.; Fan, C. H.; Zhang, H. Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J. Am. Chem. Soc. 2013, 135, 5998-6001.
[65]
Tan, C. L.; Yu, P.; Hu, Y. L.; Chen, J. Z.; Huang, Y.; Cai, Y. Q.; Luo, Z. M.; Li, B.; Lu, Q. P. et al. High-yield exfoliation of ultrathin two-dimensional ternary chalcogenide nanosheets for highly sensitive and selective fluorescence DNA sensors. J. Am. Chem. Soc. 2015, 137, 10430-10436.
[66]
Ou, J. Z.; Chrimes, A. F.; Wang, Y. C.; Tang, S. Y.; Strano, M. S.; Kalantar-zadeh, K. Ion-driven photoluminescence modulation of quasi-two-dimensional MoS2 nanoflakes for applications in biological systems. Nano Lett. 2014, 14, 857-863.
[67]
Sharma, A.; Yan, H.; Zhang, L. L.; Sun, X. Q.; Liu, B. Q.; Lu, Y. R. Highly enhanced many-body interactions in anisotropic 2D semiconductors. Acc. Chem. Res. 2018, 51, 1164-1173.
[68]
Cui, Y. Y.; Yang, J.; Zhou, Q. F.; Liang, P.; Wang, Y. L.; Gao, X. Y.; Wang, Y. T. Renal clearable Ag nanodots for in vivo computer tomography imaging and photothermal therapy. ACS Appl. Mater. Interfaces 2017, 9, 5900-5906.
[69]
Sun, W. J.; Thies, S.; Zhang, J. L.; Peng, C.; Tang, G. Y.; Shen, M. W.; Pich, A.; Shi, X. Y. Gadolinium-loaded poly(N-vinylcaprolactam) nanogels: Synthesis, characterization, and application for enhanced tumor MR imaging. ACS Appl. Mater. Interfaces 2017, 9, 3411-3418.
[70]
Pu, K. Y.; Shuhendler, A. J.; Jokerst, J. V.; Mei, J. G.; Gambhir, S. S.; Bao, Z. N.; Rao, J. H. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat. Nanotechnol. 2014, 9, 233-239.
[71]
Chou, S. S.; Kaehr, B.; Kim, J.; Foley, B. M.; De, M.; Hopkins, P. E.; Huang, J. X.; Brinker, C. J.; Dravid, V. P. Chemically exfoliated MoS2 as near-infrared photothermal agents. Angew. Chem., Int. Ed. 2013, 52, 4160-4164.
[72]
Lei, Z. Y.; Zhu, W. C.; Xu, S. J.; Ding, J.; Wan, J. X.; Wu, P. Y. Hydrophilic MoSe2 nanosheets as effective photothermal therapy agents and their application in smart devices. ACS Appl. Mater. Interfaces 2016, 8, 20900-20908.
[73]
Chen, H.; Liu, T. J.; Su, Z. Q.; Shang, L.; Wei, G. 2D transition metal dichalcogenide nanosheets for photo/thermo-based tumor imaging and therapy. Nanoscale Horiz. 2018, 3, 74-89.
[74]
Zhi, C. Y.; Bando, Y.; Terao, T.; Tang, C. C.; Kuwahara, H.; Golberg, D. Chemically activated boron nitride nanotubes. Chem. Asian J. 2009, 4, 1536-1540.
[75]
Sainsbury, T.; O’Neill, A.; Passarelli, M. K.; Seraffon, M.; Gohil, D.; Gnaniah, S.; Spencer, S. J.; Rae, A.; Coleman, J. N. Dibromocarbene functionalization of boron nitride nanosheets: Toward band gap manipulation and nanocomposite applications. Chem. Mater. 2014, 26, 7039-7050.
[76]
Zeng, Z. Y.; Tan, C. L.; Huang, X.; Baoa, S. Y.; Zhang, H. Growth of noble metal nanoparticles on single-layer TiS2 and TaS2 nanosheets for hydrogen evolution reaction. Energy Environ. Sci. 2014, 7, 797-803.
[77]
Zhi, C. Y.; Bando, Y.; Tang, C. C.; Honda, S.; Sato, K.; Kuwahara, H.; Golberg, D. Covalent functionalization: Towards soluble Multiwalled boron nitride nanotubes. Angew. Chem., Int. Ed. 2005, 44, 7932-7935.
[78]
Weng, Q. H.; Wang, B. J.; Wang, X. B.; Hanagata, N.; Li, X.; Liu, D. Q.; Wang, X.; Jiang, X. F.; Bando, Y. et al. Highly water-soluble, porous, and biocompatible boron nitrides for anticancer drug delivery. ACS Nano 2014, 8, 6123-6130.
[79]
Vogl, T.; Lecamwasam, R.; Buchler, B. C.; Lu, Y. R.; Lam, P. K. Compact cavity-enhanced single-photon generation with hexagonal boron nitride. ACS Photonics 2019, 6, 1955-1962.
[80]
Li, X.; Zhi, C. Y.; Hanagata, N.; Yamaguchi, M.; Bando, Y.; Golberg, D. Boron nitride nanotubes functionalized with mesoporous silica for intracellular delivery of chemotherapy drugs. Chem. Commun. 2013, 49, 7337-7339.
[81]
Horváth, L.; Magrez, A.; Golberg, D.; Zhi, C. Y.; Bando, Y.; Smajda, R.; Horváth, E.; Forró, L.; Schwaller, B. In vitro investigation of the cellular toxicity of boron nitride nanotubes. ACS Nano 2011, 5, 3800-3810.
[82]
Rasheed, P. A.; Sandhyarani, N. Graphene-DNA electrochemical sensor for the sensitive detection of BRCA1 gene. Sens. Actuators B Chem. 2014, 204, 777-782.
[83]
Feng, L. Y.; Chen, Y.; Ren, J. S.; Qu, X. G. A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells. Biomaterials 2011, 32, 2930-2937.
[84]
Muthuraj, B.; Mukherjee, S.; Chowdhury, S. R.; Patra, C. R.; Iyer, P. K. An efficient strategy to assemble water soluble histidine-perylene diimide and graphene oxide for the detection of PPi in physiological conditions and in vitro. Biosens. Bioelectron. 2017, 89, 636-644.
[85]
Zhu, C. Z.; Du, D.; Lin, Y. H. Graphene and graphene-like 2D materials for optical biosensing and bioimaging: A review. 2D Mater. 2015, 2, 032004.
[86]
Zhu, Y. W.; Murali, S.; Cai, W. W.; Li, X. S.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Graphene and graphene-like 2D materials for optical biosensing and bioimaging: A review. Adv. Mater. 2010, 22, 3906-3924.
[87]
Jung, J. H.; Cheon, D. S.; Liu, F.; Lee, K. B.; Seo, T. S. A graphene oxide based immuno-biosensor for pathogen detection. Angew. Chem., Int. Ed. 2010, 49, 5708-5711.
[88]
Zhu, X. B.; Ji, X. Y.; Kong, N.; Chen, Y. H.; Mahmoudi, M.; Xu, X. D.; Ding, L.; Tao, W.; Cai, T. et al. Intracellular mechanistic understanding of 2D MoS2 nanosheets for anti-exocytosis-enhanced synergistic cancer therapy. ACS Nano 2018, 12, 2922-2938.
[89]
Pandit, S.; Karunakaran, S.; Boda, S. K.; Basu, B.; De, M. High antibacterial activity of functionalized chemically exfoliated MoS2. ACS Appl. Mater. Interfaces 2016, 8, 31567-31573.
[90]
Choi, J. R.; Yong, K. W.; Choi, J. Y.; Nilghaz, A.; Lin, Y.; Xu, J.; Lu, X. N. Black phosphorus and its biomedical applications. Theranostics 2018, 8, 1005-1026.
[91]
Lu, X. L.; Feng, X. D.; Werber, J. R.; Chu, C. H.; Zucker, I.; Kim, J. H.; Osuji, C. O.; Elimelech, M. Enhanced antibacterial activity through the controlled alignment of graphene oxide nanosheets. Proc. Natl. Acad. Sci. USA 2017, 114, E9793-E9801.
[92]
Dellieu, L.; Lawarée, E.; Reckinger, N.; Didembourg, C.; Letesson, J. J.; Sarrazin, M.; Deparis, O.; Matroule, J. Y.; Colomer, J. F. Do CVD grown graphene films have antibacterial activity on metallic substrates? Carbon 2015, 84, 310-316.
[93]
Gao, Y.; Wu, J. C.; Ren, X. M.; Tan, X. L.; Hayat, T.; Alsaedi, A.; Cheng, C.; Chen, C. L. Impact of graphene oxide on the antibacterial activity of antibiotics against bacteria. Environ. Sci.: Nano 2017, 4, 1016-1024.
[94]
Krishnamoorthy, K.; Umasuthan, N.; Mohan, R.; Lee, J.; Kim, S. J. Antibacterial activity of graphene oxide nanosheets. Sci. Adv. Mater. 2012, 4, 1111-1117.
[95]
Li, T.; Shen, J. F.; Li, N.; Ye. M. X. Facile in situ synthesis of hydrophilic RGO-CD-Ag supramolecular hybrid and its enhanced antibacterial properties. Mater. Sci. Eng. C 2014, 39, 352-358.
[96]
Bang, G. S.; Cho, S.; Son, N.; Shim, G. W.; Cho, B. K.; Choi, S. Y. DNA-assisted exfoliation of tungsten dichalcogenides and their antibacterial effect. ACS Appl. Mater. Interfaces 2016, 8, 1943-1950.
[97]
Rasool, K.; Helal, M.; Ali, A.; Ren, C. E.; Gogotsi, Y.; Mahmoud, K. A. Antibacterial activity of Ti3C2Tx MXene. ACS Nano 2016, 10, 3674-3684.
[98]
Tao, W.; Zhu, X. B.; Yu, X. H.; Zeng, X. W.; Xiao, Q. L.; Zhang, X. D.; Ji, X. Y.; Wang, X. S.; Shi, J, J. et al. Black phosphorus nanosheets as a robust delivery platform for cancer theranostics. Adv. Mater. 2017, 29, 1603276.
[99]
Cheng, L.; Yuan, C.; Shen, S. D.; Yi, X.; Gong, H.; Yang, K.; Liu, Z. Bottom-up synthesis of metal-ion-doped WS2 nanoflakes for cancer theranostics. ACS Nano 2015, 9, 11090-11101.
[100]
Zhang, X. D.; Wang, H. X.; Wang, H.; Zhang, Q.; Xie, J. F.; Tian, Y. P.; Wang, J.; Xie, Y. Single-layered graphitic-C3N4 quantum dots for two-photon fluorescence imaging of cellular nucleus. Adv. Mater. 2014, 26, 4438-4443.
[101]
Zhang, X. D.; Xie, X.; Wang, H.; Zhang, J. J.; Pan, B. C.; Xie, Y. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 2013, 135, 18-21.
[102]
Xu, B. Z.; Zhu, M. S.; Zhang, W. C.; Zhen, X.; Pei, Z. X.; Xue, Q.; Zhi, C. Y.; Shi, P. Ultrathin MXene-micropattern-based field-effect transistor for probing neural activity. Adv. Mater. 2016, 28, 3333-3339.
[103]
Zheng, C.; Huang, L.; Zhang, H.; Sun, Z. Y.; Zhang, Z. Y.; Zhang, G. J. Fabrication of ultrasensitive field-effect transistor DNA biosensors by a directional transfer technique based on CVD-grown graphene. ACS Appl. Mater. Interfaces 2015, 7, 16953-16959..
[104]
Afsahi, S.; Lerner, M. B.; Goldstein, J. M.; Lee, J.; Tang, X. L.; Bagarozzi, D. A. Jr.; Pan, D.; Locascio, L.; Walker, A. et al. Novel graphene-based biosensor for early detection of Zika virus infection. Biosens. Bioelectron. 2018, 100, 85-88.
[105]
Gong, Q. J.; Wang, Y. D.; Yang, H. Y. A sensitive impedimetric DNA biosensor for the determination of the HIV gene based on graphene-Nafion composite film. Biosens. Bioelectron. 2017, 89, 565-569.
[106]
Wu, X.; Mu, F. W.; Wang, Y. H.; Zhao, H. Y. Graphene and graphene-based nanomaterials for DNA detection: A review. Molecules 2018, 23, 2050.
[107]
Lin, J.; Teweldebrhan, D.; Ashraf, K.; Liu, G. X.; Jing, X. Y.; Yan, Z.; Li, R.; Ozkan, M.; Lake, R. K. et al. Gating of single-layer graphene with single-stranded deoxyribonucleic acids. Small 2010, 6, 1150-1155.
[108]
Dong, H. F.; Zhang, J.; Ju, H. X.; Lu, H. T.; Wang, S. Y.; Jin, S.; Hao, K. H.; Du, H. W.; Zhang, X. J. Highly sensitive multiple microRNA detection based on fluorescence quenching of graphene oxide and isothermal strand-displacement polymerase reaction. Anal. Chem. 2012, 84, 4587-4593.
[109]
Ye, Y. K.; Xie, J. Q.; Ye, Y. W.; Cao, X. D.; Zheng, H. S.; Xu, X.; Zhang, Q. A label-free electrochemical DNA biosensor based on thionine functionalized reduced graphene oxide. Carbon 2018, 129, 730-737.
[110]
Wang, X. X.; Nan, F. X.; Zhao, J. L.; Yang, T.; Ge, T.; Jiao, K. A label-free ultrasensitive electrochemical DNA sensor based on thin-layer MoS2 nanosheets with high electrochemical activity. Biosens. Bioelectron. 2015, 64, 386-391.
[111]
Chen, C. H. Label-free detection of DNA hybridization on MoS2 using photoluminescence measurements. In Proceedings of the 9th IEEE International Conference on Nano/Molecular Medicine & Engineering, Honolulu, USA, 2015, pp 196-199.
[112]
Xiang, X.; Shi, J. B.; Huang, F. H.; Zheng, M. M.; Deng, Q. C.; Xu, J. Q. MoS2 nanosheet-based fluorescent biosensor for protein detection via terminal protection of small-molecule-linked DNA and exonuclease III-aided DNA recycling amplification. Biosens. Bioelectron. 2015, 74, 227-232.
[113]
Wang, T. Y.; Zhu, H. C.; Zhuo, J. Q.; Zhu, Z. W.; Papakonstantinou, P.; Lubarsky, G.; Lin, J.; Li, M. X. Biosensor based on ultrasmall MoS2 nanoparticles for electrochemical detection of H2O2 released by cells at the nanomolar level. Anal. Chem. 2013, 85, 10289-10295.
[114]
Lin, X. Y.; Ni, Y. N.; Kokot, S. Electrochemical cholesterol sensor based on cholesterol oxidase and MoS2-AuNPs modified glassy carbon electrode. Sens. Actuators B Chem. 2016, 233, 100-106.
[115]
Wu, L. X.; Lu, X. B.; Dhanjai; Wu, Z. S.; Dong, Y. F.; Wang, X. H.; Zheng, S. H.; Chen, J. P. 2D transition metal carbide MXene as a robust biosensing platform for enzyme immobilization and ultrasensitive detection of phenol. Biosens. Bioelectron. 2018, 107, 69-75.
[116]
Tuteja, S. K.; Neethirajan, S. Exploration of two-dimensional bio-functionalized phosphorene nanosheets (black phosphorous) for label free haptoglobin electro-immunosensing applications. Nanotechnology 2018, 29, 135101.
[117]
Yin, Z. Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. D. et al. Single-layer MoS2 phototransistors. ACS Nano 2012, 6, 74-80.
[118]
Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano 2011, 5, 9703-9709.
[119]
Mohanty, N.; Berry, V. Graphene-based single-bacterium resolution biodevice and DNA transistor: Interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett. 2008, 8, 4469-4476.
[120]
Park, H. Y.; Dugasani, S. R.; Kang, D. H.; Jeon, J.; Jang, S. K.; Lee, S.; Roh, Y.; Park, S. H.; Park, J. H. n- and p-type doping phenomenon by artificial DNA and M-DNA on two-dimensional transition metal dichalcogenides. ACS Nano 2014, 8, 11603-11613.
[121]
Loan, P. T. K.; Zhang, W. J.; Lin, C. T.; Wei, K. H.; Li, L. J.; Chen, C. H. Graphene/MoS2 heterostructures for ultrasensitive detection of DNA hybridisation. Adv. Mater. 2014, 26, 4838-4844.
[122]
Zeng, S. W.; Hu, S. Y.; Xia, J.; Anderson, T.; Dinh, X. Q.; Meng, X. M.; Coquet, P.; Yong, K. T. Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors. Sens. Actuators B Chem. 2015, 207, 801-810.
[123]
Pei, J. J.; Gai, X.; Yang, J.; Wang, X. B.; Yu, Z. F.; Choi, D. Y.; Luther-Davies, B. L.; Lu, Y. R. Producing air-stable monolayers of phosphorene and their defect engineering. Nat. Commun. 2016, 7, 10450.
[124]
Lu, J. P.; Yang, J.; Carvalho, A.; Liu, H. W.; Lu, Y. R.; Sow, C. H. Light-matter interactions in phosphorene. Acc. Chem. Res. 2016, 49, 1806-1815.
[125]
Chen, H. T.; Corboliou, V.; Solntsev, A. S.; Choi, D. Y.; Vincenti, M. A.; de Ceglia, D.; de Angelis, C.; Lu, Y. R.; Neshev, D. N. Enhanced second-harmonic generation from two-dimensional MoSe2 on a silicon waveguide. Light Sci. Appl. 2017, 6, e17060.
[126]
Neupane, G. P.; Dhakal, K. P.; Kim, H.; Lee, J.; Kim, M. S.; Han, G.; Lee, Y. H.; Kim, J. Formation of nanosized monolayer MoS2 by oxygen-assisted thinning of multilayer MoS2. J. Appl. Phys. 2016, 120, 051702.
[127]
Kim, M. S.; Yun, S. J.; Lee, Y.; Seo, C.; Han, G. H.; Kim, K. K.; Lee, Y. H.; Kim, J. Biexciton emission from edges and grain boundaries of triangular WS2 monolayers. ACS Nano 2016, 10, 2399-2405.
[128]
Choi, W.; Choudhary, N.; Han, G. H.; Park, J.; Akinwande, D.; Lee, Y. H. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 2017, 20, 116-130.
[129]
Yang, F.; Song, P.; Ruan, M. B.; Xu, W. L. Recent progress in two-dimensional nanomaterials: Synthesis, engineering, and applications. FlatChem 2019, 18, 100133.
[130]
Yan, Z.; He, X. X.; She, L. N.; Sun, J.; Jiang, R. B.; Xu, H.; Shi, F.; Lei, Z. B.; Liu, Z. H. Solvothermal-assisted liquid-phase exfoliation of large size and high quality black phosphorus. J. Mater. 2018, 4, 129-134.
[131]
Hantanasirisakul, K.; Gogotsi, Y. Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Adv. Mater. 2018, 30, 1804779.
[132]
Paredes, J. I.; Villar-Rodil, S.; Martínez-Alonso, A.; Tascón, J. M. D. Graphene oxide dispersions in organic solvents. Langmuir 2008, 24, 10560-10564.
[133]
Pinto, A. M.; Moreira, J. A.; Magalhães, F. D.; Goncalves, I. C. Polymer surface adsorption as a strategy to improve the biocompatibility of graphene nanoplatelets. Colloids Surf. B 2016, 146, 818-824.
[134]
Chen, X.; Berner, N. C.; Backes, C.; Duesberg, G. S.; McDonald, A. R. Functionalization of two-dimensional MoS2: On the reaction between MoS2 and organic thiols. Angew. Chem., Int. Ed. 2016, 55, 5803-5808.
[135]
Sim, D. M.; Kim, M.; Yim, S.; Choi, M. J.; Choi, J.; Yoo, S.; Jung, Y. S. Controlled doping of vacancy-containing few-layer MoS2 via highly stable thiol-based molecular chemisorption. ACS Nano 2015, 9, 12115-12123.
[136]
Tuxen, A.; Kibsgaard, J.; Gøbel, H.; Lægsgaard, E.; Topsøe, H.; Lauritsen, J. V.; Besenbacher, F. Size threshold in the dibenzothiophene adsorption on MoS2 nanoclusters. ACS Nano 2010, 4, 4677-4682.
[137]
Knirsch, K. C.; Berner, N. C.; Nerl, H. C.; Cucinotta, C. S.; Gholamvand, Z.; McEvoy, N.; Wang, Z. X.; Abramovic, I.; Vecera, P. et al. Basal-plane functionalization of chemically exfoliated molybdenum disulfide by diazonium salts. ACS Nano 2015, 9, 6018-6030.
[138]
Voiry, D.; Goswami, A.; Kappera, R.; de Carvalho Castro e Silva, C.; Kaplan, D.; Fujita, T.; Chen, M. W.; Asefa, T.; Chhowalla, M. Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. Nat. Chem. 2014, 7, 45-49.
[139]
Lee, M.; Kwon, J.; Na, S. Mechanical behavior comparison of spider and silkworm silks using molecular dynamics at atomic scale. Phys. Chem. Chem. Phys. 2016, 18, 4814-4821.
[140]
Luo, J.; Vargheese, K. D.; Tandia, A.; Hu, G. L.; Mauro, J. C. Crack nucleation criterion and its application to impact indentation in glasses. Sci. Rep. 2016, 6, 23720.
[141]
Guo, C.; Xu, M. M.; Xu, S. Y.; Wang, L. Y. Multifunctional nanoprobes for both fluorescence and 19F magnetic resonance imaging. Nanoscale 2017, 9, 7163-7168.
[142]
Xu, S. Y.; Bai, X. L.; Ma, J. W.; Xu, M. M.; Hu, G. F.; James, T. D.; Wang, L. Y. Ultrasmall organic nanoparticles with aggregation-induced emission and enhanced quantum yield for fluorescence cell imaging. Anal. Chem. 2016, 88, 7853-7857.
[143]
Nune, S. K.; Gunda, P.; Thallapally, P. K.; Lin, Y. Y.; Forrest, M. L.; Berkland, C. J. Nanoparticles for biomedical imaging. Expert Opin. Drug Deliv. 2009, 6, 1175-1194.
[144]
Wen, W.; Song, Y.; Yan, X.; Zhu, C. Z.; Du, D.; Wang, S. F.; Asiri, A. M.; Lin, Y. H. Recent advances in emerging 2D nanomaterials for biosensing and bioimaging applications. Mater. Today 2018, 21, 164-177.
[145]
Xu, S. Y.; Huang, S.; He, Q.; Wang, L. Y. Upconversion nanophosphores for bioimaging. TrAC Trends Anal. Chem. 2015, 66, 72-79.
[146]
Amani, M.; Lien, D. H.; Kiriya, D.; Xiao, J.; Azcatl, A.; Noh, J.; Madhvapathy, S. R.; Addou, R.; KC, S. et al. Near-unity photoluminescence quantum yield in MoS2. Science 2015, 350, 1065-1068.
[147]
Neupane, G. P.; Tran, M. D.; Yun, S. J.; Kim, H.; Seo, C.; Lee, J.; Han, G. H.; Sood, A. K.; Kim, J. Simple chemical treatment to n-dope transition-metal dichalcogenides and enhance the optical and electrical characteristics. ACS Appl. Mater. Interfaces 2017, 9, 11950-11958.
[148]
Roldán, R.; Castellanos-Gomez, A.; Cappelluti, E.; Guinea, F. Strain engineering in semiconducting two-dimensional crystals. J. Phys.: Condens. Matter 2015, 27, 313201.
[149]
Li, Z.; Chang, S. W.; Chen, C. C.; Cronin, S. B. Enhanced photocurrent and photoluminescence spectra in MoS2 under ionic liquid gating. Nano Res. 2014, 7, 973-980.
[150]
You, B. Q.; Wang, X. C.; Zheng, Z. D.; Mi, W. B. Black phosphorene/monolayer transition-metal dichalcogenides as two dimensional van der Waals heterostructures: A first-principles study. Phys. Chem. Chem. Phys. 2016, 18, 7381-7388.
[151]
Rasmussen, F. A.; Thygesen, K. S. Computational 2D materials database: Electronic structure of transition-metal dichalcogenides and oxides. J. Phys. Chem. C 2015, 119, 13169-13183.
[152]
Özçelik, V. O.; Azadani, J. G.; Yang, C.; Koester, S. J.; Low, T. Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching. Phys. Rev. B 2016, 94, 035125.
[153]
Chang, Y. L.; Yang, S. T.; Liu, J. H.; Dong, E. Y.; Wang, Y. W.; Cao, A. N.; Liu, Y. F.; Wang, H. F. In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol. Lett. 2011, 200, 201-210.
[154]
Wang, K.; Ruan, J.; Song, H.; Zhang, J. L.; Wo, Y.; Guo, S. W.; Cui, D. X. Biocompatibility of graphene oxide. Nanoscale Res. Lett. 2011, 6, 8.
[155]
Teo, W. Z.; Chng, E. L. K.; Sofer, Z.; Pumera, M. Cytotoxicity of exfoliated transition-metal dichalcogenides (MoS2, WS2, and WSe2) is lower than that of graphene and its analogues. Chem.—Eur. J. 2014, 20, 9627-9632.
[156]
Latiff, N. M.; Teo, W. Z.; Sofer, Z.; Fisher, A. C.; Pumera, M. The cytotoxicity of layered black phosphorus. Chem.—Eur. J. 2015, 21, 13991-13995.
[157]
Ahadian, S.; Estili, M.; Surya, V. J.; Ramón-Azcón, J. R.; Liang, X. B.; Shiku, H.; Ramalingam, M.; Matsue, T.; Sakka, Y. et al. Facile and green production of aqueous graphene dispersions for biomedical applications. Nanoscale 2015, 7, 6436-6443.
[158]
Pattammattel, A.; Kumar, C. V. Kitchen chemistry 101: Multigram production of high quality biographene in a blender with edible proteins. Adv. Funct. Mater. 2015, 25, 7088-7098.
[159]
Wang, D.; Song, L.; Zhou, K. Q.; Yu, X. J.; Hu, Y.; Wang, J. Anomalous nano-barrier effects of ultrathin molybdenum disulfide nanosheets for improving the flame retardance of polymer nanocomposites. J. Mater. Chem. A 2015, 3, 14307-14317.
[160]
Patra, J. K.; Das, G.; Fraceto, L. F.; Campos, E. V. R.; del Pilar Rodriguez-Torres, M.; Acosta-Torres, L. S.; Diaz-Torres, L. A.; Grillo, R.; Swamy, M. K. et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 71.
[161]
Hu, G. F.; Yang, L. L.; Li, Y.; Wang, L. Y. Continuous and scalable fabrication of stable and biocompatible MOF@SiO2 nanoparticles for drug loading. J. Mater. Chem. B 2018, 6, 7936-7942.
[162]
Huang, S.; Liu, J.; He, Q.; Chen, H. L.; Cui, J. B.; Xu, S. Y.; Zhao, Y. L.; Chen, C. Y.; Wang, L. Y. Smart Cu1.75S nanocapsules with high and stable photothermal efficiency for NIR photo-triggered drug release. Nano Res. 2015, 8, 4038-4047.
[163]
Randviir, E. P.; Brownson, D. A. C.; Banks, C. E. A decade of graphene research: Production, applications and outlook. Mater. Today 2014, 17, 426-432.
[164]
Yong, Y.; Zhou, L. J.; Gu, Z. J.; Yan, L.; Tian, G.; Zheng, X. P.; Liu, X. D.; Zhang, X.; Shi, J. X. et al. WS2 nanosheet as a new photosensitizer carrier for combined photodynamic and photothermal therapy of cancer cells. Nanoscale 2014, 6, 10394-10403.
[165]
Chen, J. S.; Doane, T. L.; Li, M. X.; Zang, H. D.; Maye, M. M.; Cotlet, M. 0D-2D and 1D-2D semiconductor hybrids composed of all inorganic perovskite nanocrystals and single-layer graphene with improved light harvesting. Part. Part. Syst. Charact. 2018, 35, 1700310.
[166]
Kiriya, D.; Hijikata, Y.; Pirillo, J.; Kitaura, R.; Murai, A.; Ashida, A.; Yoshimura, T.; Fujimura, N. Systematic study of photoluminescence enhancement in monolayer molybdenum disulfide by acid treatment. Langmuir 2018, 34, 10243-10249.
[167]
Kang, D. H.; Jeon, M. H.; Jang, S. K.; Choi, W. Y.; Kim, K. N.; Kim, J.; Lee, S.; Yeom, G. Y.; Park, J. H. Self-assembled layer (SAL)-based doping on black phosphorus (BP) transistor and photodetector. ACS Photonics 2017, 4, 1822-1830.
[168]
Castellanos-Gomez, A.; Roldán, R.; Cappelluti, E.; Buscema, M.; Guinea, F.; van der Zant, H. S. J.; Steele, G. A. Local strain engineering in atomically thin MoS2. Nano Lett. 2013, 13, 5361-5366.
[169]
Neupane, G. P.; Dhakal, K. P.; Lee, H.; Guthold, M.; Joseph, V. S.; Hong, J. D.; Kim, J. Simple method of DNA stretching on glass substrate for fluorescence image and spectroscopy. In Proceedings of the SPIE 8879, Nano-Bio Sensing, Imaging, and Spectroscopy, Jeju, Korea, 2013, pp 88790J.
[170]
Yu, L. L.; Lee, Y. H.; Ling, X.; Santos, E. J. G.; Shin, Y. C.; Lin, Y. X.; Dubey, M.; Kaxiras, E.; Kong, J. et al. Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. Nano Lett. 2014, 14, 3055-3063.
[171]
Nazir, G.; Khan, M. F.; Aftab, S.; Afzal, A. M.; Dastgeer, G.; Rehman, M. A.; Seo, Y.; Eom, J. Gate tunable transport in graphene/MoS2/(Cr/Au) vertical field-effect transistors. Nanomaterials 2018, 8, 14.
[172]
Shim, J.; Banerjee, S.; Qiu, H.; Smithe, K. K. H.; Estrada, D.; Bello, J.; Pop, E.; Schulten, K.; Bashir, R. Detection of methylation on dsDNA using nanopores in a MoS2 membrane. Nanoscale 2017, 9, 14836-14845.
[173]
Akhavan, O.; Ghaderi, E.; Rahighi, R. Toward single-DNA electrochemical biosensing by graphene nanowalls. ACS Nano. 2012, 6, 2904-2916.
[174]
Li, B.; Pan, G.; Avent, N. D.; Lowry, R. B.; Madgett, T. E.; Waines, P. L. Graphene electrode modified with electrochemically reduced graphene oxide for label-free DNA detection. Biosens Bioelectron. 2015, 72, 313-319.
[175]
Carey, T.; Cacovich, S.; Divitini, G.; Ren, J. S.; Mansouri, A.; Kim, J. M.; Wang, C. X.; Ducati, C.; Sordan, R. et al. Fully inkjet-printed two-dimensional material field-effect heterojunctions for wearable and textile electronics. Nat. Commun. 2017, 8, 1202.
[176]
Kim, J.; Jeerapan, I.; Imani, S.; Cho, T. N.; Bandodkar, A.; Cinti, S.; Mercier, P. P.; Wang, J. Noninvasive alcohol monitoring using a wearable tattoo-based iontophoretic-biosensing system. ACS Sens. 2016, 1, 1011-1019.
[177]
Lee, H.; Song, C. Y.; Hong, Y. S.; Kim, M. S.; Cho, H. R.; Kang, T.; Shin, K.; Choi, S. H.; Hyeon, T. et al. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci. Adv. 2017, 3, e1601314.
[178]
Alizadeh, A.; Burns, A.; Lenigk, R.; Gettings, R.; Ashe, J.; Porter, A.; McCaul, M.; Barrett, R.; Diamond, D. et al. A wearable patch for continuous monitoring of sweat electrolytes during exertion. Lab Chip 2018, 18, 2632-2641.
[179]
Cao, X. Y.; Halder, A.; Tang, Y. Y.; Hou, C. Y.; Wang, H. Z.; Duus, J. Ø.; Chi, Q. J. Engineering two-dimensional layered nanomaterials for wearable biomedical sensors and power devices. Mater. Chem. Front. 2018, 2, 1944-1986.
[180]
Yang, J.; Wang, Z.; Wang, F.; Xu, R. J.; Tao, J.; Zhang, S.; Qin, Q. H.; Davies, B. L.; Jagadish, C. et al. Atomically thin optical lenses and gratings. Light Sci. Appl. 2016, 5, e16046.
[181]
Sasidharan, A.; Panchakarla, L. S.; Sadanandan, A. R.; Ashokan, A.; Chandran, P.; Girish, C. M.; Menon, D.; Nair, S. V.; Rao, C. N. R. et al. Hemocompatibility and macrophage response of pristine and functionalized graphene. Small 2012, 8, 1251-1263.
[182]
Park, J.; Park, S.; Ryu, S.; Bhang, S. H.; Kim, J.; Yoon, J. K.; Park, Y. H.; Cho, S. P.; Lee, S. et al. Graphene-regulated cardiomyogenic differentiation process of mesenchymal stem cells by enhancing the expression of extracellular matrix proteins and cell signaling molecules. Adv. Healthc. Mater. 2014, 3, 176-181.
[183]
Cheng, C.; Nie, S. Q.; Li, S.; Peng, H.; Yang, H.; Ma, L.; Sun, S. D.; Zhao, C. S. Biopolymer functionalized reduced graphene oxide with enhanced biocompatibility via mussel inspired coatings/anchors. J. Mater. Chem. B 2013, 1, 265-275.
[184]
Jasim, D. A.; Murphy, S.; Newman, L.; Mironov, A.; Prestat, E.; McCaffrey, J.; Ménard-Moyon, C.; Rodrigues, A. F.; Bianco, A. et al. The effects of extensive glomerular filtration of thin graphene oxide sheets on kidney physiology. ACS Nano 2016, 10, 10753-10767.
[185]
Zhang, W. D.; Wang, C.; Li, Z. J.; Lu, Z. Z.; Li, Y. Y.; Yin, J. J.; Zhou, Y. T.; Gao, X. F.; Fang, Y.; Nie, G. J. et al. Unraveling stress-induced toxicity properties of graphene oxide and the underlying mechanism. Adv. Mater. 2012, 24, 5391-5397.
[186]
Chia, H. L.; Latiff, N. M.; Sofer, Z.; Pumera, M. Cytotoxicity of group 5 transition metal ditellurides (MTe2; M = V, Nb, Ta). Chem.—Eur. J. 2018, 24, 206-211.
[187]
Guiney, L. M.; Wang, X.; Xia, T.; Nel, A. E.; Hersam, M. C. Assessing and mitigating the hazard potential of two-dimensional materials. ACS Nano 2018, 12, 6360-6377.
[188]
Shareena, T. P. D.; McShan, D.; Dasmahapatra, A. K.; Tchounwou, P. B. A review on graphene-based nanomaterials in biomedical applications and risks in environment and health. Nano-Micro Lett. 2018, 10, 53.
[189]
Latiff, N.; Teo, W. Z.; Sofer, Z.; Huber, Š.; Fisher, A. C.; Pumera, M. Toxicity of layered semiconductor chalcogenides: Beware of interferences. RSC Adv. 2015, 5, 67485-67492.
[190]
Liu, T.; Shi, S. X.; Liang, C.; Shen, S. D.; Cheng, L.; Wang, C.; Song, X. J.; Goel, S.; Barnhart, T. E. et al. Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radiolabeling and multimodal imaging guided photothermal therapy. ACS Nano 2015, 9, 950-960.
Nano Research
Pages 1-17
Cite this article:
Neupane GP, Zhang L, Yildirim T, et al. A prospective future towards bio/medical technology and bioelectronics based on 2D vdWs heterostructures. Nano Research, 2020, 13(1): 1-17. https://doi.org/10.1007/s12274-019-2585-3
Topics:

865

Views

31

Crossref

N/A

Web of Science

16

Scopus

2

CSCD

Altmetrics

Received: 08 October 2019
Revised: 21 November 2019
Accepted: 27 November 2019
Published: 19 December 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return